A051163 Sequence is defined by property that (a0,a1,a2,a3,...) = binomial transform of (a0,a0,a1,a1,a2,a2,a3,a3,...).
1, 2, 5, 12, 30, 76, 194, 496, 1269, 3250, 8337, 21428, 55184, 142376, 367916, 952000, 2466014, 6393372, 16586678, 43054344, 111801908, 290412296, 754543052, 1960808160, 5096293794, 13247503540, 34440553562, 89549255592, 232868582328, 605646682144
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Transforms
Programs
-
Maple
a:= proc(n) option remember; add(`if`(k<2, 1, a(iquo(k, 2)))*binomial(n, k), k=0..n) end: seq(a(n), n=0..40); # Alois P. Heinz, Jul 08 2015
-
Mathematica
a[n_] := a[n] = 1 + Sum[Binomial[k, j]*Binomial[n-k, j]*a[j], {k, 1, n}, {j, 0, n-k}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 11 2015 *)
-
PARI
a(n)=1+sum(k=1,n,sum(j=0,n-k,binomial(k,j)*binomial(n-k,j)*a(j)))
-
PARI
a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=subst(A,x,(x/(1-x))^2)/(1-x)); polcoeff(A^2,n)) for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Nov 22 2004
Formula
a(n) = 1 + Sum_{k=1..n} Sum_{j=0..n-k} C(k, j)*C(n-k, j)*a(j). - Paul D. Hanna, Nov 22 2004
G.f. A(x) satisfies: A(x) = A(x^2/(1-x)^2)/(1-x)^2 and A(x^2) = A(x/(1+x))/(1+x)^2. - Paul D. Hanna, Nov 22 2004
a(0) = 1; a(n) = Sum_{k=0..floor(n/2)} binomial(n+1,2*k+1) * a(k). - Ilya Gutkovskiy, Apr 07 2022
Extensions
More terms from Vladeta Jovovic, Jul 26 2002
Comments