cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051229 Numbers m such that the Bernoulli number B_{2*m} has denominator 66.

Original entry on oeis.org

5, 25, 85, 185, 235, 295, 305, 335, 355, 365, 395, 425, 505, 535, 635, 685, 695, 745, 815, 835, 925, 985, 995, 1115, 1135, 1145, 1285, 1315, 1345, 1385, 1415, 1445, 1475, 1525, 1535, 1555, 1565, 1585, 1655, 1675, 1735, 1765
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

Examples

			The numbers m = 5, 25 belong to the list because B_10 = 5/66 and B_50 = 495057205241079648212477525/66. - _Petros Hadjicostas_, Jun 06 2020
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],Denominator[BernoulliB[2 #]]==66&] (* Harvey P. Dale, Mar 11 2012 *)
  • PARI
    is(n)=denominator(bernfrac(2*n))==66 \\ Charles R Greathouse IV, Feb 06 2017
    
  • Sage
    [n for n in (1..2000) if denominator(bernoulli(2*n))==66 ] # G. C. Greubel, Jun 06 2020

Formula

a(n) = 5*A119456(n). - G. C. Greubel, Jun 06 2020

Extensions

More terms from Michael Somos
Name edited by Petros Hadjicostas, Jun 06 2020