cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051254 Mills primes.

Original entry on oeis.org

2, 11, 1361, 2521008887, 16022236204009818131831320183, 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499
Offset: 1

Views

Author

Keywords

Comments

Mills showed that there is a number A > 1 but not an integer, such that floor( A^(3^n) ) is a prime for all n = 1, 2, 3, ... A is approximately 1.306377883863... (see A051021).
a(1) = 2 and (for n > 1) a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006, corrected by M. F. Hasler, Sep 11 2024
The name refers to the American mathematician William Harold Mills (1921-2007). - Amiram Eldar, Jun 23 2021

Examples

			a(3) = 1361 = 11^3 + 30 = a(2)^3 + 30 and there is no smaller k such that a(2)^3 + k is prime. - _Jonathan Vos Post_, May 05 2006
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 137.

Crossrefs

Cf. A224845 (integer lengths of Mills primes).
Cf. A108739 (sequence of offsets b_n associated with Mills primes).
Cf. A051021 (decimal expansion of Mills constant).

Programs

  • Maple
    floor(A^(3^n), n=1..10); # A is Mills's constant: 1.306377883863080690468614492602605712916784585156713644368053759966434.. (A051021).
  • Mathematica
    p = 1; Table[p = NextPrime[p^3], {6}] (* T. D. Noe, Sep 24 2008 *)
    NestList[NextPrime[#^3] &, 2, 5] (* Harvey P. Dale, Feb 28 2012 *)
  • PARI
    a(n)=if(n==1, 2, nextprime(a(n-1)^3)) \\ Charles R Greathouse IV, Jun 23 2017
    
  • PARI
    apply( {A051254(n, p=2)=while(n--, p=nextprime(p^3));p}, [1..6]) \\ M. F. Hasler, Sep 11 2024

Formula

a(1) = 2; a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006

Extensions

Edited by N. J. A. Sloane, May 05 2007