A051296 INVERT transform of factorial numbers.
1, 1, 3, 11, 47, 231, 1303, 8431, 62391, 524495, 4960775, 52223775, 605595319, 7664578639, 105046841127, 1548880173119, 24434511267863, 410503693136559, 7315133279097607, 137787834979031839, 2734998201208351479, 57053644562104430735, 1247772806059088954855
Offset: 0
Examples
a(4) = 47 = 1*24 + 1*6 + 3*2 + 11*1. a(4) = 47, the upper left term of M^4.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974.
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..440 (first 200 terms from Alois P. Heinz)
- Jean-Paul Bultel, Ali Chouria, Jean-Gabriel Luque, and Olivier Mallet, Word symmetric functions and the Redfield-Polya theorem, hal-00793788, 2013.
- Louis Comtet, Sur les coefficients de l'inverse de la série formelle Sum n! t^n, Comptes Rend. Acad. Sci. Paris, A 275 (1972), 569-572.
- Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy, Catalan-Spitzer permutations, arXiv:2310.06288 [math.CO], 2023. See p. 20.
- Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 7.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*factorial(i), i=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Jul 28 2015
-
Mathematica
CoefficientList[Series[Sum[Sum[k!*x^k, {k, 1, 20}]^n, {n, 0, 20}], {x, 0, 20}], x] (* Geoffrey Critzer, Mar 22 2009 *)
-
Sage
h = lambda x: 1/(1-x*hypergeometric((1, 2), (), x)) taylor(h(x),x,0,22).list() # Peter Luschny, Jul 28 2015
-
Sage
def A051296_list(len): R, C = [1], [1]+[0]*(len-1) for n in (1..len-1): for k in range(n, 0, -1): C[k] = C[k-1] * k C[0] = sum(C[k] for k in (1..n)) R.append(C[0]) return R print(A051296_list(23)) # Peter Luschny, Feb 21 2016
Formula
G.f.: 1/(1-Sum_{n>=1} n!*x^n).
a(0) = 1; a(n) = Sum_{k=1..n} a(n-k)*k! for n>0.
a(n) = Sum_{k>=0} A090238(n, k). - Philippe Deléham, Feb 05 2004
From Gary W. Adamson, Sep 26 2011: (Start)
a(n) is the upper left term of M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
2, 0, 2, 0, 0, 0, ...
3, 0, 0, 3, 0, 0, ...
4, 0, 0, 0, 4, 0, ...
5, 0, 0, 0, 0, 5, ...
... (End)
G.f.: 1 + x/(G(0) - 2*x) where G(k) = 1 + (k+1)*x - x*(k+2)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 26 2012
a(n) ~ n! * (1 + 2/n + 7/n^2 + 35/n^3 + 216/n^4 + 1575/n^5 + 13243/n^6 + 126508/n^7 + 1359437/n^8 + 16312915/n^9 + 217277446/n^10), for coefficients see A260530. - Vaclav Kotesovec, Jul 28 2015
From Peter Bala, May 26 2017: (Start)
G.f. as an S-fraction: A(x) = 1/(1 - x/(1 - 2*x/(1 - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - n*x/(1 - (n - 1)*x/(1 - ...)))))))))). Cf. S-fraction for the o.g.f. of A000142.
A(x) = 1/(1 - x/(1 - x - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - 4*x/(1 - 4*x/(1 - ... ))))))))). (End)
Extensions
Entry revised by David Callan, Sep 20 2007
Comments