A119937
Triangle of numbers related to the spectrum of the hydrogen (H) atom.
Original entry on oeis.org
3, 32, 5, 135, 27, 7, 3456, 756, 256, 81, 3500, 800, 300, 125, 44, 172800, 40500, 16000, 7425, 3456, 1300, 694575, 165375, 67375, 33075, 17199, 8575, 3375, 6272000, 1509200, 627200, 318500, 175616, 98000, 51200
Offset: 2
[3]; [32,5]; [135,27,7]; [3456,756,256,81]; [3500,800,300,125,44]; ...
The LCM sequence which has been used here is [4, 36, 144, 3600, 3600, 176400, 705600, 6350400, 6350400, 768398400, ...] =
A051418(m) = (
A003418(m))^2 = (2*
A025555(m-1))^2, m >= 2.
A120078
Coefficient triangle of numerator polynomials appearing in certain column o.g.f.s related to the H-atom spectrum.
Original entry on oeis.org
1, 4, -3, 36, -27, -5, 144, -108, -20, -7, 3600, -2700, -500, -175, -81, 3600, -2700, -500, -175, -81, -44, 176400, -132300, -24500, -8575, -3969, -2156, -1300, 705600, -529200, -98000, -34300, -15876, -8624, -5200, -3375, 6350400, -4762800, -882000, -308700, -142884, -77616, -46800, -30375, -20825
Offset: 1
For n=2 the o.g.f. of A120072(m,2)/A120073(m,2) (=[5/36, 3/16, 21/100, 2/9, ...]) is G(x,2) = -dilog(1-x) + x*P(2,x)/(1*4*(1-x)) = -dilog(1-x) + x*(4-3*x)/(4*(1-x)).
Triangle begins:
1;
4, -3;
36, -27, -5;
144, -108, -20, -7;
3600, -2700, -500, -175, -81;
3600, -2700, -500, -175, -81, -44;
176400, -132300, -24500, -8575, -3969, -2156, -1300;
Signed row sums conjectured to coincide with
A027451.
-
f:= func< n | n eq 1 select 1 else 1/n^2 -1/(n-1)^2 >;
A120078:= func< n,k | (Lcm([1..n]))^2*f(k) >;
[A120078(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 26 2023
-
Table[(Apply[LCM, Range[n]])^2*If[k==1, 1, (1-2*k)/(k*(k-1))^2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 26 2023 *)
-
def f(k): return 1 if (k==1) else 1/k^2 - 1/(k-1)^2
def A120078(n,k): return (lcm(range(1, n+1)))^2*f(k)
flatten([[A120078(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Apr 26 2023
A120079
Unsigned row sums of triangle A120078.
Original entry on oeis.org
1, 7, 68, 279, 7056, 7100, 349200, 1400175, 12622400, 12637296, 1530446400, 1531460700, 258950260800, 259056111600, 259141506624, 1036845584775, 299715332716800, 299771444772800, 108234634597689600, 108249271042728816, 108261866776377600, 108272784263716800
Offset: 1
Signed row sums conjectured to be
A027451(n), which also appears in the denominator of o.g.f.s. G(x, n) given in
A120078 as numbers A(n).
-
[(2-1/n^2)*(Lcm([1..n]))^2: n in [1..40]]; // G. C. Greubel, Apr 26 2023
-
Table[(2-1/n^2)*(Apply[LCM, Range[n]])^2, {n, 40}] (* G. C. Greubel, Apr 26 2023 *)
-
def A120079(n): return (2 - 1/n^2)*(lcm(range(1, n+1)))^2
[A120079(n) for n in range(1,41)] # G. C. Greubel, Apr 26 2023
A053608
Numbers x = LCM(1,2,...,k) such that x^2 + 1 is prime.
Original entry on oeis.org
1, 2, 6, 420, 360360, 718766754945489455304472257065075294400
Offset: 1
-
Select[FoldList[LCM, 1, Select[Range[100], PrimePowerQ]], PrimeQ[#^2 + 1] &] (* Amiram Eldar, Aug 23 2024 *)
A053609
Primes of form x^2+1 where x = LCM(1,2,...,k) for some k.
Original entry on oeis.org
2, 5, 37, 176401, 129859329601, 516625648014869290354797521879383114125823989794742396526049715541246671360001
Offset: 1
-
Select[FoldList[LCM, 1, Select[Range[100], PrimePowerQ]]^2 + 1, PrimeQ] (* Amiram Eldar, Aug 23 2024 *)
A257895
Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (denominators).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 4, 1, 1, 12, 36, 8, 1, 1, 60, 144, 216, 16, 1, 1, 20, 3600, 1728, 1296, 32, 1, 1, 140, 3600, 216000, 20736, 7776, 64, 1, 1, 280, 176400, 72000, 12960000, 248832, 46656, 128, 1, 1, 2520, 705600, 24696000, 12960000, 777600000
Offset: 1
Array of fractions begins:
1, 1, 1, 1, 1, 1, ...
1, 3/2, 7/4, 15/8, 31/16, 63/32, ...
1, 11/6, 85/36, 575/216, 3661/1296, 22631/7776, ...
1, 25/12, 415/144, 5845/1728, 76111/20736, 952525/248832, ...
1, 137/60, 12019/3600, 874853/216000, 58067611/12960000, 3673451957/777600000, ...
1, 49/20, 13489/3600, 336581/72000, 68165041/12960000, 483900263/86400000, ...
...
Row 2 (denominators) is A000079 (powers of 2),
Row 3 is A000400 (powers of 6),
Row 4 is A001021 (powers of 12),
Row 5 is A159991,
Row 6 is not in the OEIS.
Column 2 (denominators) is A002805 (denominators of harmonic numbers),
Column 3 is A051418 (lcm(1..n)^2),
Column 4 is not in the OEIS.
-
T[n_, k_] := Sum[(-1)^(j - 1)*j^(1 - k)*Binomial[n, j], {j, 1, n}]; Table[T[n - k + 1, k] // Denominator, {n, 1, 12}, {k, 1, n}] // Flatten
A309556
Composite numbers m such that m divides Sum_{k=1..m-1} (lcm(1,2,...,(m-1)) / k)^2.
Original entry on oeis.org
52781, 782957, 1395353, 2602439
Offset: 1
-
s = 0; c = 1; n = 1; seq = {}; Do[s += 1/n^2; c = LCM[c, n^2]; n++; If[CompositeQ[n] && Divisible[s*c, n], AppendTo[seq, n]], {2 * 10^6}]; seq
Showing 1-7 of 7 results.
Comments