cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A119937 Triangle of numbers related to the spectrum of the hydrogen (H) atom.

Original entry on oeis.org

3, 32, 5, 135, 27, 7, 3456, 756, 256, 81, 3500, 800, 300, 125, 44, 172800, 40500, 16000, 7425, 3456, 1300, 694575, 165375, 67375, 33075, 17199, 8575, 3375, 6272000, 1509200, 627200, 318500, 175616, 98000, 51200
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The rational number triangle r(m,n):=A120072(m,n)/A120073(m,n), used to compute the spectral series of the hydrogen atom, is mapped to this nonnegative number triangle by multiplying the least common multiples (LCM) for each row m.

Examples

			[3]; [32,5]; [135,27,7]; [3456,756,256,81]; [3500,800,300,125,44]; ...
		

Crossrefs

The LCM sequence which has been used here is [4, 36, 144, 3600, 3600, 176400, 705600, 6350400, 6350400, 768398400, ...] = A051418(m) = (A003418(m))^2 = (2*A025555(m-1))^2, m >= 2.
The row sums give A119938.

Formula

a(m,n) = r(m,n)*lcm_{k=1..m-1} seq(r(m,k)) with r(m,n) = 1/n^2 - 1/m^2 = A120072(m,n)/A120073(m,n), m >= 2, n = 1..m-1.

A120078 Coefficient triangle of numerator polynomials appearing in certain column o.g.f.s related to the H-atom spectrum.

Original entry on oeis.org

1, 4, -3, 36, -27, -5, 144, -108, -20, -7, 3600, -2700, -500, -175, -81, 3600, -2700, -500, -175, -81, -44, 176400, -132300, -24500, -8575, -3969, -2156, -1300, 705600, -529200, -98000, -34300, -15876, -8624, -5200, -3375, 6350400, -4762800, -882000, -308700, -142884, -77616, -46800, -30375, -20825
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The row polynomials P(n,x) = Sum_{k=1..n-1} a(n,k)*x^k, n >= 1, appear in the numerator of the o.g.f. for column n of the triangle of rationals A120072(m,n)/A120073(m,n), m >= 2, n = 1..m-1. P(n,x) has degree n-1.
See the W. Lang link under A120072 for the precise form of the o.g.f.s: G(x,n) = -dilog(1-x) + x*P(n,4)/*(A(n)*(n^2)*(1-x)), with A(n) = [1, 1, 4, 9, 144, 100, 3600, 11025, 78400, 63504, ...] = conjectured to be A027451(n), n >= 1.

Examples

			For n=2 the o.g.f. of A120072(m,2)/A120073(m,2) (=[5/36, 3/16, 21/100, 2/9, ...]) is G(x,2) = -dilog(1-x) + x*P(2,x)/(1*4*(1-x)) = -dilog(1-x) + x*(4-3*x)/(4*(1-x)).
Triangle begins:
       1;
       4,      -3;
      36,     -27,     -5;
     144,    -108,    -20,    -7;
    3600,   -2700,   -500,  -175,   -81;
    3600,   -2700,   -500,  -175,   -81,   -44;
  176400, -132300, -24500, -8575, -3969, -2156, -1300;
		

Crossrefs

Row sums (unsigned) give A120079.
Signed row sums conjectured to coincide with A027451.

Programs

  • Magma
    f:= func< n | n eq 1 select 1 else 1/n^2 -1/(n-1)^2 >;
    A120078:= func< n,k | (Lcm([1..n]))^2*f(k) >;
    [A120078(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 26 2023
    
  • Mathematica
    Table[(Apply[LCM, Range[n]])^2*If[k==1, 1, (1-2*k)/(k*(k-1))^2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 26 2023 *)
  • SageMath
    def f(k): return 1 if (k==1) else 1/k^2 - 1/(k-1)^2
    def A120078(n,k): return (lcm(range(1, n+1)))^2*f(k)
    flatten([[A120078(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Apr 26 2023

Formula

T(n, k) = A051418(n) * (1 if k = 1 otherwise 1/k^2 - 1/(k-1)^2). - G. C. Greubel, Apr 26 2023

A120079 Unsigned row sums of triangle A120078.

Original entry on oeis.org

1, 7, 68, 279, 7056, 7100, 349200, 1400175, 12622400, 12637296, 1530446400, 1531460700, 258950260800, 259056111600, 259141506624, 1036845584775, 299715332716800, 299771444772800, 108234634597689600, 108249271042728816, 108261866776377600, 108272784263716800
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Crossrefs

Signed row sums conjectured to be A027451(n), which also appears in the denominator of o.g.f.s. G(x, n) given in A120078 as numbers A(n).

Programs

  • Magma
    [(2-1/n^2)*(Lcm([1..n]))^2: n in [1..40]]; // G. C. Greubel, Apr 26 2023
    
  • Mathematica
    Table[(2-1/n^2)*(Apply[LCM, Range[n]])^2, {n, 40}] (* G. C. Greubel, Apr 26 2023 *)
  • SageMath
    def A120079(n): return (2 - 1/n^2)*(lcm(range(1, n+1)))^2
    [A120079(n) for n in range(1,41)] # G. C. Greubel, Apr 26 2023

Formula

a(n) = Sum_{k=1..n} abs(A120078(n,k)), n >= 1.
From G. C. Greubel, Apr 26 2023: (Start)
a(n) = (2 - 1/n^2)*A051418(n).
a(n) = A056220(n)*A051418(n)/A000290(n). (End)

Extensions

Terms a(11) onward added by G. C. Greubel, Apr 26 2023

A053608 Numbers x = LCM(1,2,...,k) such that x^2 + 1 is prime.

Original entry on oeis.org

1, 2, 6, 420, 360360, 718766754945489455304472257065075294400
Offset: 1

Views

Author

Labos Elemer, Feb 09 2000

Keywords

Comments

The next term has k > 10^4, if it exists. - Amiram Eldar, Aug 23 2024

Crossrefs

Programs

  • Mathematica
    Select[FoldList[LCM, 1, Select[Range[100], PrimePowerQ]], PrimeQ[#^2 + 1] &] (* Amiram Eldar, Aug 23 2024 *)

A053609 Primes of form x^2+1 where x = LCM(1,2,...,k) for some k.

Original entry on oeis.org

2, 5, 37, 176401, 129859329601, 516625648014869290354797521879383114125823989794742396526049715541246671360001
Offset: 1

Views

Author

Labos Elemer, Feb 09 2000

Keywords

Comments

The next term has k > 10^4, if it exists. - Amiram Eldar, Aug 23 2024

Crossrefs

Programs

  • Mathematica
    Select[FoldList[LCM, 1, Select[Range[100], PrimePowerQ]]^2 + 1, PrimeQ] (* Amiram Eldar, Aug 23 2024 *)

Formula

a(n) = A053608(A053608(n)) = A053608(n)^2 + 1. - Amiram Eldar, Aug 23 2024

A257895 Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (denominators).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 4, 1, 1, 12, 36, 8, 1, 1, 60, 144, 216, 16, 1, 1, 20, 3600, 1728, 1296, 32, 1, 1, 140, 3600, 216000, 20736, 7776, 64, 1, 1, 280, 176400, 72000, 12960000, 248832, 46656, 128, 1, 1, 2520, 705600, 24696000, 12960000, 777600000
Offset: 1

Views

Author

Jean-François Alcover, May 12 2015

Keywords

Examples

			Array of fractions begins:
1,      1,          1,             1,                 1,                    1, ...
1,    3/2,        7/4,          15/8,             31/16,                63/32, ...
1,   11/6,      85/36,       575/216,         3661/1296,           22631/7776, ...
1,  25/12,    415/144,     5845/1728,       76111/20736,        952525/248832, ...
1, 137/60, 12019/3600, 874853/216000, 58067611/12960000, 3673451957/777600000, ...
1,  49/20, 13489/3600,  336581/72000, 68165041/12960000,   483900263/86400000, ...
...
Row 2 (denominators) is A000079 (powers of 2),
Row 3 is A000400 (powers of 6),
Row 4 is A001021 (powers of 12),
Row 5 is A159991,
Row 6 is not in the OEIS.
Column 2 (denominators) is A002805 (denominators of harmonic numbers),
Column 3 is A051418 (lcm(1..n)^2),
Column 4 is not in the OEIS.
		

Crossrefs

Cf. A257894 (numerators).

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(j - 1)*j^(1 - k)*Binomial[n, j], {j, 1, n}]; Table[T[n - k + 1, k] // Denominator, {n, 1, 12}, {k, 1, n}] // Flatten

Formula

T(n,k) = Sum_{j=1..n} (-1)^(j-1)*j^(1-k)*binomial(n,j).

A309556 Composite numbers m such that m divides Sum_{k=1..m-1} (lcm(1,2,...,(m-1)) / k)^2.

Original entry on oeis.org

52781, 782957, 1395353, 2602439
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Aug 07 2019

Keywords

Comments

Composites m such that m | H_2(m-1) * lcm(1^2,2^2,...,(m-1)^2), where H_2(m) = 1/1^2 + 1/2^2 + ... + 1/m^2.
By Wolstenholme's theorem, if p > 3 is a prime, then p divides the numerator of H_2(p-1) and thus H_2(p-1) * lcm(1,2^2,...,(p-1)^2) == 0 (mod p). This sequence is formed by the pseudoprimes that are solutions of this congruence.
a(5) > 10^7 if it exists.

Crossrefs

Cf. A007406, A007407, A025529 (see our comment), A051418.

Programs

  • Mathematica
    s = 0; c = 1; n = 1; seq = {}; Do[s += 1/n^2; c = LCM[c, n^2]; n++; If[CompositeQ[n] && Divisible[s*c, n], AppendTo[seq, n]], {2 * 10^6}]; seq
Showing 1-7 of 7 results.