cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A051905 Duplicate of A051426.

Original entry on oeis.org

2, 4, 12, 24, 120, 120, 840, 1680, 5040, 5040, 55440, 55440, 720720, 720720, 720720
Offset: 1

Views

Author

Keywords

A159293 a(n) = smallest prime congruent to 1 mod A051426(n).

Original entry on oeis.org

3, 5, 13, 73, 241, 241, 2521, 3361, 15121, 15121, 55441, 55441, 4324321, 4324321, 4324321, 4324321, 196035841, 196035841, 1862340481, 1862340481, 1862340481, 1862340481, 10708457761, 10708457761, 214169155201, 214169155201
Offset: 1

Views

Author

Zak Seidov, Apr 09 2009

Keywords

Crossrefs

A051426 Least common multiple of {2, 4, 6..., 2n}.

Programs

  • Mathematica
    L1=2;A1={3};Do[L1=LCM[L1,n];k=1;While[ !PrimeQ[p=k*L1+1],k++ ];Print[p];AppendTo[A1,n],{n,4,60,2}]

A025547 Least common multiple of {1,3,5,...,2n-1}.

Original entry on oeis.org

1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675
Offset: 1

Views

Author

Keywords

Comments

This sequence coincides with the sequence f(n) = denominator of 1 + 1/3 + 1/5 + 1/7 + ... + 1/(2n-1) iff n <= 38. But a(39) = 6414924694381721303722858446525, f(39) = 583174972216520118520259858775. - T. D. Noe, Aug 04 2004 [See A350670(n-1).]
Coincides for n=1..42 with the denominators of a series for Pi*sqrt(2)/4 and then starts to differ. See A127676.
a(floor((n+1)/2)) = gcd(a(n), A051426(n)). - Reinhard Zumkeller, Apr 25 2011
A051417(n) = a(n+1)/a(n).

Crossrefs

Cf. A007509, A025550, A075135. The numerators are in A074599.
Cf. A003418 (LCM of {1..n}).

Programs

  • Haskell
    a025547 n = a025547_list !! (n-1)
    a025547_list = scanl1 lcm a005408_list
    -- Reinhard Zumkeller, Oct 25 2013, Apr 25 2011
    
  • Maple
    A025547:=proc(n) local i,t1; t1:=1; for i from 1 to n do t1:=lcm(t1,2*i-1); od: t1; end;
    f := n->denom(add(1/(2*k-1),k=0..n)); # a different sequence!
  • Mathematica
    a = 1; Join[{1}, Table[a = LCM[a, n], {n, 3, 125, 2}]] (* Zak Seidov, Jan 18 2011 *)
    nn=30;With[{c=Range[1,2*nn,2]},Table[LCM@@Take[c,n],{n,nn}]] (* Harvey P. Dale, Jan 27 2013 *)
  • PARI
    a(n)=lcm(vector(n,k,2*k-1)) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return list(accumulate((2*i+1 for i in range(nn)), lcm))
    print(aupton(23)) # Michael S. Branicky, Mar 28 2022
Showing 1-3 of 3 results.