A051905 Duplicate of A051426.
2, 4, 12, 24, 120, 120, 840, 1680, 5040, 5040, 55440, 55440, 720720, 720720, 720720
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
L1=2;A1={3};Do[L1=LCM[L1,n];k=1;While[ !PrimeQ[p=k*L1+1],k++ ];Print[p];AppendTo[A1,n],{n,4,60,2}]
a025547 n = a025547_list !! (n-1) a025547_list = scanl1 lcm a005408_list -- Reinhard Zumkeller, Oct 25 2013, Apr 25 2011
A025547:=proc(n) local i,t1; t1:=1; for i from 1 to n do t1:=lcm(t1,2*i-1); od: t1; end; f := n->denom(add(1/(2*k-1),k=0..n)); # a different sequence!
a = 1; Join[{1}, Table[a = LCM[a, n], {n, 3, 125, 2}]] (* Zak Seidov, Jan 18 2011 *) nn=30;With[{c=Range[1,2*nn,2]},Table[LCM@@Take[c,n],{n,nn}]] (* Harvey P. Dale, Jan 27 2013 *)
a(n)=lcm(vector(n,k,2*k-1)) \\ Charles R Greathouse IV, Nov 20 2012
# generates initial segment of sequence from math import gcd from itertools import accumulate def lcm(a, b): return a * b // gcd(a, b) def aupton(nn): return list(accumulate((2*i+1 for i in range(nn)), lcm)) print(aupton(23)) # Michael S. Branicky, Mar 28 2022
Comments