cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051436 Number of undirected walks of length n+1 on tetrahedron, visiting n+2 vertices, with n "corners", as in A001998, but allowing only rigid motions in 3-space (|G| = 12). Walks are not self-avoiding.

Original entry on oeis.org

1, 2, 5, 12, 39, 111, 350, 1044, 3201, 9627, 29150, 87672, 264069, 793431, 2384450, 7159164, 21494001, 64507827, 193589270, 580878432, 1742897949, 5229157551, 15688522250, 47067483684, 141206647401, 423627793227, 1270900160990, 3812732430792, 11438264409429
Offset: 0

Views

Author

Keywords

Examples

			For n=2 there are three walks that stay in one face and two that visit two faces.
		

Crossrefs

Programs

  • Haskell
    a051436 n = (3 ^ n + 3 ^ m - 2 ^ n + (1 - r) * 2 ^ m) `div` 2 + r
                where (m,r) = divMod n 2
    -- Reinhard Zumkeller, Jun 30 2013
    
  • Maple
    a:= n-> `if`(irem(n, 2, 'm')=0,
            (3^n+3^m)/2+2^(m-1), (3^n+3^m)/2+1) -2^(n-1):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jul 17 2013
  • Mathematica
    a[n_?OddQ] := (3^n + 3^((n - 1)/2))/2 - 2^(n - 1) + 1; a[n_?EvenQ] := (3^n + 3^(n/2))/2 - 2^(n - 1) + 2^(n/2 - 1); Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jan 25 2013, from formula *)
    LinearRecurrence[{5,0,-30,25,55,-60,-30,36},{1,2,5,12,39,111,350,1044},40] (* Harvey P. Dale, Oct 30 2015 *)
  • PARI
    a(n)=if(n%2, (3^n + 3^((n - 1)/2))/2 + 1, (3^n + 3^(n/2))/2 + 2^(n/2 - 1)) - 2^(n-1) \\ Charles R Greathouse IV, Feb 10 2017

Formula

n=2m: (3^n+3^m)/2 -2^(n-1)+2^(m-1); n=2m+1: (3^n+3^m)/2 - 2^(n-1) +1.
G.f.: -(39*x^7-20*x^6-39*x^5+14*x^4+17*x^3-5*x^2-3*x+1) / ((x-1)*(x+1)*(2*x-1)*(3*x-1)*(2*x^2-1)*(3*x^2-1)). - Colin Barker, Jul 17 2013

Extensions

Corrected by T. D. Noe, Nov 09 2006