cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051537 Triangle read by rows: T(i,j) = lcm(i,j)/gcd(i,j) for 1 <= j <= i.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 2, 12, 1, 5, 10, 15, 20, 1, 6, 3, 2, 6, 30, 1, 7, 14, 21, 28, 35, 42, 1, 8, 4, 24, 2, 40, 12, 56, 1, 9, 18, 3, 36, 45, 6, 63, 72, 1, 10, 5, 30, 10, 2, 15, 70, 20, 90, 1, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 1, 12, 6, 4, 3, 60, 2, 84, 6, 12, 30, 132, 1, 13, 26, 39
Offset: 1

Views

Author

N. J. A. Sloane and Amarnath Murthy, May 10 2002

Keywords

Comments

From Robert G. Wilson v, May 10 2002: (Start)
The first term of the k-th row is k. The first leading diagonal contains all 1's. The second leading diagonal contains twice the triangular numbers = n*(n-1).
For p prime, the sum of the p-th row is (p^3 - p^2 + 2)/2.
Proof: The p-th row is p, 2*p, 3*p, ..., (p-2)*p, (p-1)*p, 1. The sum of the row = p*(1 + 2 + 3 + ... + (p-2) + (p-1)) + 1 = p*(p-1)*p/2 + 1 = (p^3 - p^2 + 2)/2. (End) [Edited by Petros Hadjicostas, May 27 2020]
In the square array where T(i,j) = T(j,i), the natural extension of the triangle, each set of rows and columns with common indices [d1, d2, ..., ds] define a group multiplication table on their grid, if the d1, d2, ..., ds are the set of divisors of a squarefree number [A. Jorza]. - R. J. Mathar, May 03 2007
T(n,k) is the minimum number of squares necessary to fill a rectangle with sides of length n and k. - Stefano Spezia, Oct 06 2018

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins
  1;
  2,  1;
  3,  6,  1;
  4,  2, 12,  1;
  5, 10, 15, 20,  1;
  6,  3,  2,  6, 30,  1;
  7, 14, 21, 28, 35, 42,  1;
  8,  4, 24,  2, 40, 12, 56,  1;
  ...
		

Crossrefs

Diagonals give A002378, A070260, A070261, A070262.
Row sums give A056789.

Programs

  • GAP
    Flat(List([1..13],n->List([1..n],k->Lcm(n,k)/Gcd(n,k)))); # Muniru A Asiru, Oct 06 2018
    
  • Haskell
    a051537 n k = a051537_tabl !! (n-1) !! (k-1)
    a051537_row n = a051537_tabl !! (n-1)
    a051537_tabl = zipWith (zipWith div) a051173_tabl a050873_tabl
    -- Reinhard Zumkeller, Jul 07 2013
    
  • Magma
    /* As triangle */ [[Lcm(n,k)/Gcd(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 07 2018
  • Maple
    T:=proc(n,k) n*k/gcd(n,k)^2; end proc: seq(seq(T(n,k),k=1..n),n=1..13); # Muniru A Asiru, Oct 06 2018
  • Mathematica
    Flatten[ Table[ LCM[i, j] / GCD[i, j], {i, 1, 13}, {j, 1, i}]]
    T[n_,k_]:=n*k/GCD[n,k]^2; Flatten[Table[T[n,k],{k,1,13},{n,1,k}]] (* Stefano Spezia, Oct 06 2018 *)

Formula

T(n,k) = A054531(n,k)*A164306(n,k). - Reinhard Zumkeller, Oct 30 2009
T(n,k) = A051173(n,k) / A050873(n,k). - Reinhard Zumkeller, Jul 07 2013
T(n,k) = n*k/gcd(n,k)^2. - Stefano Spezia, Oct 06 2018

Extensions

More terms from Robert G. Wilson v, May 10 2002