A051582 a(n) = (2*n+8)!!/8!!, related to A000165 (even double factorials).
1, 10, 120, 1680, 26880, 483840, 9676800, 212889600, 5109350400, 132843110400, 3719607091200, 111588212736000, 3570822807552000, 121407975456768000, 4370687116443648000, 166086110424858624000, 6643444416994344960000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..399
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
Crossrefs
Programs
-
GAP
F:=Factorial;; List([0..20], n-> 2^n*F(n+4)/F(4) ); # G. C. Greubel, Nov 12 2019
-
Magma
F:=Factorial; [2^n*F(n+4)/F(4): n in [0..20]]; // G. C. Greubel, Nov 12 2019
-
Maple
seq(2^n*pochhammer(5, n), n=0..20); # G. C. Greubel, Nov 12 2019
-
Mathematica
(2Range[0,20]+8)!!/8!! (* Harvey P. Dale, Feb 03 2013 *) Table[2^n*Pochhammer[5, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
PARI
vector(20, n, n--; (n+4)!*2^(n-1)/12) \\ Michel Marcus, Feb 09 2015
-
Sage
f=factorial; [2^n*f(n+4)/f(4) for n in (0..20)] # G. C. Greubel, Nov 12 2019
Formula
a(n) = (2*n+8)!!/8!!.
E.g.f.: 1/(1-2*x)^5.
a(n) = (n+4)!*2^(n-1)/12. - Zerinvary Lajos, Sep 23 2006
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 10)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 10*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 10*x/(1 - 2*x/(1 - 12*x/(1 - 4*x/(1 - 14*x/(1 - 6*x/(1 - ... - (2*n + 8)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 10*x/(1 - 12*x/(1 - 2*x/(1 - 14*x/(1 - 4*x/(1 - 16*x/(1 - 6*x/(1 - ... - (2*n + 10)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 384*sqrt(e) - 632.
Sum_{n>=0} (-1)^n/a(n) = 384/sqrt(e) - 232. (End)
Comments