A121231
Number of n X n binary matrices M (that is, real matrices with entries 0 and 1) such that M^2 is also a binary matrix.
Original entry on oeis.org
1, 2, 11, 172, 6327, 474286, 67147431, 17080038508
Offset: 0
Edited by R. J. Mathar, Oct 01 2008
a(7) from
R. H. Hardin, Jun 19 2012. This makes it clear that the old
A122527 was really a badly-described version of this sequence, and that a(7) was earlier found by Balakrishnan (bvarada2(AT)jhu.edu), Sep 17 2006. -
N. J. A. Sloane, Jun 19 2012
A052387
Number of 3 X n binary matrices such that any 2 rows have a common 1, up to column permutations.
Original entry on oeis.org
0, 1, 8, 37, 127, 358, 876, 1926, 3894, 7359, 13156, 22451, 36829, 58396, 89896, 134844, 197676, 283917, 400368, 555313, 758747, 1022626, 1361140, 1791010, 2331810, 3006315, 3840876, 4865823, 6115897, 7630712, 9455248
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
[n*(n+1)*(n+2)*(n+3)*(n^3+22*n^2+53*n+134)/5040: n in [0..30]]; // Wesley Ivan Hurt, May 15 2014
-
A052387:=n->n*(n+1)*(n+2)*(n+3)*(n^3+22*n^2+53*n+134)/5040; seq(A052387(n), n=0..30); # Wesley Ivan Hurt, May 15 2014
-
Table[n*(n + 1)*(n + 2)*(n + 3)*(n^3 + 22*n^2 + 53*n + 134)/5040, {n,
0, 30}] (* Wesley Ivan Hurt, May 15 2014 *)
-
x='x+O('x^50); concat([0], Vec(-x*(x^3-x^2-1)/(x-1)^8)) \\ G. C. Greubel, Oct 07 2017
A052388
Number of 4 X n binary matrices such that any 2 rows have a common 1, up to column permutations.
Original entry on oeis.org
0, 1, 16, 146, 955, 4905, 20907, 76851, 250530, 739612, 2009177, 5085119, 12109526, 27348478, 58955082, 121956402, 243172488, 469115187, 878387366, 1600751976, 2845918041, 4946262815, 8419256605, 14057377245, 23055913530, 37192403430, 59075703351, 92488040301
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
-
[n*(n+1)*(n+2)*(n+3)*(n+4)*(n^10 +110*n^9 +5445*n^8 +160050*n^7 +2906463*n^6 +30644250*n^5 +176659055*n^4 +711220750*n^3 +1781493036*n^2 +4034382840*n +4159814400)/1307674368000: n in [0..25]]; // G. C. Greubel, Oct 07 2017
-
CoefficientList[Series[-x*(x^10 -5*x^9 +10*x^8 -14*x^7 +21*x^6 -19*x^5 -5*x^4 +21*x^3 -10*x^2 -1)/(x-1)^16, {x, 0, 50}], x] (* G. C. Greubel, Oct 07 2017 *)
-
x='x+O('x^50); concat([0], Vec(-x*(x^10 -5*x^9 +10*x^8 -14*x^7 +21*x^6 -19*x^5 -5*x^4 +21*x^3 -10*x^2 -1)/(x-1)^16)) \\ G. C. Greubel, Oct 07 2017
A319366
Number of 6 X n binary matrices such that any 2 rows have a common 1.
Original entry on oeis.org
1, 127, 14197, 1527655, 154708741, 14581420567, 1282928605477, 106281575400295, 8370106554738181, 632240233746846007, 46159332156459328357, 3278558540783856976135, 227767526682511220042821, 15545657368091391819871447, 1046175606578621216182684837
Offset: 1
Showing 1-4 of 4 results.
Comments