cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085158 Sextuple factorials, 6-factorials, n!!!!!!, n!6.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 16, 27, 40, 55, 72, 91, 224, 405, 640, 935, 1296, 1729, 4480, 8505, 14080, 21505, 31104, 43225, 116480, 229635, 394240, 623645, 933120, 1339975, 3727360, 7577955, 13404160, 21827575, 33592320, 49579075, 141639680
Offset: 0

Views

Author

Hugo Pfoertner, Jun 21 2003

Keywords

Comments

The term "Sextuple factorial numbers" is also used for the sequences A008542, A008543, A011781, A047058, A047657, A049308, which have a different definition. The definition given here is the one commonly used.

Examples

			a(14) = 224 because 14*a(14-6) = 14*a(8) = 14*16 = 224.
		

Crossrefs

Cf. n!:A000142, n!!:A006882, n!!!:A007661, n!!!!:A007662, n!!!!!:A085157, 6-factorial primes: n!!!!!!+1:A085150, n!!!!!!-1:A051592.
Cf. A288093.

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-6);
        fi;
      end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Aug 21 2019
  • Magma
    b:=func< n | n le 6 select n else n*Self(n-6) >;
    [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    a:= n-> `if`(n<1, 1, n*a(n-6)); seq(a(n), n=0..40); # G. C. Greubel, Aug 21 2019
  • Mathematica
    Table[Times@@Range[n,1,-6],{n,0,40}] (* Harvey P. Dale, Aug 10 2019 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-6));
    vector(40, n, n--; a(n) ) \\ G. C. Greubel, Aug 21 2019
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-6)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n)=1 for n < 1, otherwise a(n) = n*a(n-6).
Sum_{n>=0} 1/a(n) = A288093. - Amiram Eldar, Nov 10 2020

A085150 Numbers k such that k!!!!!! + 1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 28, 40, 42, 44, 52, 66, 68, 78, 80, 92, 100, 102, 106, 210, 214, 232, 534, 676, 772, 822, 964, 1020, 1184, 1498, 2304, 2348, 7738, 9488, 11250, 12760, 12798, 25336, 27728, 35242, 41730, 46576, 55458, 73908, 94412, 99088
Offset: 1

Views

Author

Hugo Pfoertner, Jun 23 2003

Keywords

Comments

The search for multifactorial primes started by Ray Ballinger is now continued by a team of volunteers on the website of Ken Davis (see link).

Crossrefs

Cf. A085158 (sextuple factorials), A051592.

Extensions

More terms from Hugo Pfoertner, Aug 17 2004
Corrected and extended by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008

A156167 Numbers n such that n![7]-1 is prime (where n![7] = A114799(n) = septuple factorial).

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 11, 12, 14, 17, 20, 24, 30, 31, 32, 46, 52, 54, 59, 98, 104, 143, 145, 160, 174, 198, 199, 202, 212, 215, 254, 371, 382, 452, 674, 739, 959, 1249, 1657, 2291, 2553, 2650, 3562, 3727, 3853, 4389, 4604, 5449, 5659, 6026, 6878, 7900, 9564, 10150, 12444, 13321, 22642, 24014, 26598, 27430, 31386, 40707, 43328, 45811
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(65) > 50000. - Robert Price, Sep 09 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 7] - 1] & ] (* Robert Price, Apr 19 2019 *)
  • PARI
    mf(n,k=7)=prod(i=0,(n-2)\k,n-i*k)
    for( n=1,9999, ispseudoprime(mf(n)-1) & print1(n","))

Extensions

a(43)-a(64) from Robert Price, Sep 09 2012
Showing 1-3 of 3 results.