cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051635 Weak primes: prime(n) < (prime(n-1) + prime(n+1))/2.

Original entry on oeis.org

3, 7, 13, 19, 23, 31, 43, 47, 61, 73, 83, 89, 103, 109, 113, 131, 139, 151, 167, 181, 193, 199, 229, 233, 241, 271, 283, 293, 313, 317, 337, 349, 353, 359, 383, 389, 401, 409, 421, 433, 443, 449, 463, 467, 491, 503, 509, 523, 547, 571, 577, 601, 619, 643, 647
Offset: 1

Views

Author

Felice Russo, Nov 15 1999

Keywords

Comments

Primes prime(n) such that prime(n)-prime(n-1) < prime(n+1)-prime(n). - Juri-Stepan Gerasimov, Jan 01 2011
a(n) < A051634(n). a(n) ~ 2*prime(n). - Thomas Ordowski, Jul 25 2012
The inequality above is false. The least counterexample is a(19799) = 496291 > A051634(19799) = 496283. - Amiram Eldar, Nov 26 2023
Erdős called a weak prime an "early prime." He conjectured that there are infinitely many consecutive pairs of early primes, and offered $100 for a proof and $25000 for a disproof (Kuperberg 1992). See A229832 for a stronger conjecture. - Jonathan Sondow, Oct 13 2013

Examples

			7 belongs to the sequence because 7 < (5+11)/2.
		

References

  • A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000

Crossrefs

Subsequence of A178943.
Cf. A225495 (multiplicative closure).

Programs

  • Haskell
    a051635 n = a051635_list !! (n-1)
    a051635_list = g a000040_list where
       g (p:qs@(q:r:ps)) = if 2 * q < (p + r) then q : g qs else g qs
    -- Reinhard Zumkeller, May 09 2013
  • Mathematica
    Transpose[Select[Partition[Prime[Range[10^2]], 3, 1], #[[2]]<(#[[1]]+#[[3]])/2 &]][[2]] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
    p=Prime[Range[200]]; p[[Flatten[1+Position[Sign[Differences[p, 2]], 1]]]]
  • PARI
    p=2;q=3;forprime(r=5,1e3,if(2*qCharles R Greathouse IV, Jul 25 2011
    

Formula

a(1) = A229832(1). - Jonathan Sondow, Oct 13 2013
Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 1/2. - Alain Rocchelli, Mar 17 2024

Extensions

More terms from James Sellers