A051635 Weak primes: prime(n) < (prime(n-1) + prime(n+1))/2.
3, 7, 13, 19, 23, 31, 43, 47, 61, 73, 83, 89, 103, 109, 113, 131, 139, 151, 167, 181, 193, 199, 229, 233, 241, 271, 283, 293, 313, 317, 337, 349, 353, 359, 383, 389, 401, 409, 421, 433, 443, 449, 463, 467, 491, 503, 509, 523, 547, 571, 577, 601, 619, 643, 647
Offset: 1
Examples
7 belongs to the sequence because 7 < (5+11)/2.
References
- A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Greg Kuperberg, The Erdos kitty: At least $9050 in prizes!, Newsgroups: rec.puzzles, sci.math, 1992. [Broken link]
- Greg Kuperberg, The Erdos kitty: At least $9050 in prizes!, Newsgroups: rec.puzzles, sci.math, 1992. [Cached copy]
- Wikipedia, Weak prime.
Crossrefs
Programs
-
Haskell
a051635 n = a051635_list !! (n-1) a051635_list = g a000040_list where g (p:qs@(q:r:ps)) = if 2 * q < (p + r) then q : g qs else g qs -- Reinhard Zumkeller, May 09 2013
-
Mathematica
Transpose[Select[Partition[Prime[Range[10^2]], 3, 1], #[[2]]<(#[[1]]+#[[3]])/2 &]][[2]] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *) p=Prime[Range[200]]; p[[Flatten[1+Position[Sign[Differences[p, 2]], 1]]]]
-
PARI
p=2;q=3;forprime(r=5,1e3,if(2*q
Formula
a(1) = A229832(1). - Jonathan Sondow, Oct 13 2013
Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 1/2. - Alain Rocchelli, Mar 17 2024
Extensions
More terms from James Sellers
Comments