cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A051625 Number of "labeled" cyclic subgroups of symmetric group S_n.

Original entry on oeis.org

1, 2, 5, 17, 67, 362, 2039, 14170, 109694, 976412, 8921002, 101134244, 1104940280, 13914013024, 191754490412, 2824047042632, 41304021782824, 708492417746000, 11629404776897384, 222093818836736752, 4351196253952132832, 88481681599705382144, 1781763397966126421200
Offset: 1

Views

Author

Keywords

Comments

Number of unordered lists of powers of permutation of length n (equivalent to the definition). - Olivier Gérard, Jul 04 2011
Number of subgroups of S_n with different permutations generated by single permutation (see Mathematica procedure). - Artur Jasinski, Oct 27 2011

Examples

			The 5 cyclic subgroups of symmetric group S_3 are: {Id}, the 3 subgroups {Id,(a,b)}, {Id,(b,c)}, {Id,(a,c)} and the Alternating group A_3: <Id, (a,b,c), (a,c,b)>.
The 17 cyclic subgroups of symmetric group S_4 are: {Id}, the 6 subgroups of type <(a,b)>, the 3 subgroups of type <(a,b)(c,d)>, the 4 subgroups of type <(a,b,c)> and the 3 subgroups of type <(a,b,c,d)>. - _Bernard Schott_, Feb 25 2019
		

References

  • V. Jovovic, Some combinatorial characteristics of symmetric and alternating groups (in Russian), Belgrade, 1980, unpublished.

Crossrefs

Row sums of A074881.

Programs

  • Maple
    parts:= proc(n,k) option remember;
       if k = 1 then return {[n]} fi;
       `union`(seq(map(t -> [op(t),j], procname(n-j*k,k-1)), j=0..floor(n/k)))
    end proc:
    F:= n -> add(n!/mul(p[k]!*k^p[k],k=1..nops(p)) / numtheory:-phi(ilcm(op(select(t -> p[t]<>0, [$1..n])))), p = parts(n,n)):
    seq(F(n),n=1..30); # Robert Israel, Oct 04 2015
  • Mathematica
    cc = {}; Do[aa = {}; kk = Table[n, {n, 1, ord}]; pp = Permutations[kk]; Do[per17 = {}; AppendTo[per17, pp[[p]]]; run = 0; ile = Length[per17]; min = 1; max = ile; While[ile < ord!, run = run + 1; if = False; Do[Do[vec0 = Table[0, {n, 1, ord}]; Do[vec0[[per17[[k]][[n]]]] = per17[[m]][[n]], {n, 1, ord}]; bp = vec0; If[Position[per17, bp] == {}, ile = ile + 1; Print[ile]; if = True; AppendTo[per17, bp]]; vec0 = Table[0, {n, 1, ord}]; Do[vec0[[per17[[m]][[n]]]] = per17[[k]][[n]], {n, 1, ord}]; bl = vec0; If[Position[per17, bl] == {}, ile = ile + 1; if = True; AppendTo[per17, bl]]; If[ile == ord!, Break[]], {k, 1, max}], {m, min, max}]; If[if == False, Break[], min = max + 1; max = ile]]; AppendTo[aa, Sort[per17]], {p, 1, ord!}]; AppendTo[cc, Length[Union[aa]]], {ord, 1, 7}]; cc (* Artur Jasinski, Oct 27 2011 *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]/EulerPhi[LCM @@ p], {p, IntegerPartitions[n]}]; s];
    Array[a, 23] (* Jean-François Alcover, Feb 25 2019, after Andrew Howroyd *);
    content[li_List] := Table[Count[li, i], {i, Tr[li]}]; Table[Tr[(n!/(Times @@ (Range[Tr[#1]]^content[#1]*content[#1]!)*EulerPhi[LCM @@ Flatten[Position[content[#1], ?Positive]]]) & ) /@ IntegerPartitions[n] ], {n, 23}] (* _Wouter Meeussen, Jan 06 2021 *);
  • PARI
    \\ permcount is number of permutations of given type.
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    a(n)={my(s=0); forpart(p=n, s+=permcount(p)/eulerphi(lcm(Vec(p)))); s} \\ Andrew Howroyd, Jul 03 2018

Formula

a(n) = Sum_{pi} n!/(k_1!*1^k_1*k_2!*2^k_2*...*k_n!*n^k_n*phi(lcm{i:k_i != 0})), where pi runs through all partitions k_1+2*k_2+...+n*k_n=n and phi is Euler's function.

A181950 Weighted sum of all cyclic subgroups of the Alternating Group A_n.

Original entry on oeis.org

1, 1, 4, 19, 91, 571, 4096, 38599, 370399, 3771751, 40020916, 486887611, 6457566259, 97397627419, 1566407932636, 25622476773391, 416792928270751, 7346982309720079, 141863542111338124, 2968348473040595971, 65223378275792128771, 1460499016109864574691, 32600807940657384926884
Offset: 1

Views

Author

Olivier Gérard, Apr 03 2012

Keywords

Comments

Sum of the order of all cyclic subgroups of Alt_n.
Each permutation is counted as many times as it appears in a cyclic subgroup.
a(7) = 2^12 is remarkable as a power of 2.

Examples

			a(5) = 1*1 + 2*15 + 3*10 + 5*6 = 1 + 30 +30 +30 = 91.
		

Crossrefs

Programs

  • PARI
    \\ permcount is number of permutations of given type.
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    a(n)={my(s=0); forpart(p=n, if(sum(i=1,#p,p[i]-1)%2==0, my(d=lcm(Vec(p))); s+=d*permcount(p)/eulerphi(d))); s} \\ Andrew Howroyd, Jul 03 2018

Formula

a(n) = Sum_{k=1..A051593(n)} k*A303728(n, k). - Andrew Howroyd, Jul 03 2018

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jul 03 2018

A062364 Number of cyclic subgroups of the group A_n X A_n (where A_n is the alternating group of degree n).

Original entry on oeis.org

1, 1, 5, 80, 1232, 35402, 1194062, 70565000, 4701427880, 368268892232, 32176642615592, 4268310912989312, 538435375681984640, 93863308664587110560, 20096819872783656177632, 4630250413602884766388352, 1005800123495980918868450432, 286583083615434477248177406080
Offset: 1

Views

Author

Vladeta Jovovic, Jul 11 2001

Keywords

Crossrefs

Cf. A063182, A063183, A051636, A020902, (unlabeled case) A062365.

Extensions

a(9)-a(18) from Stephen A. Silver, Feb 22 2013

A218963 Total number of maximal cyclic subgroups of the alternating group, counting conjugates as distinct.

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 121, 806, 5706, 40902, 345444, 3627834, 44916840, 473882124, 5607925896, 73429902300, 1169960275680, 18289685306640, 315392669158416, 5046227338720884, 98328156602878800, 1862418125263338720, 36536960773307025360, 777453614193997039320
Offset: 0

Views

Author

Liam Naughton, Nov 23 2012

Keywords

Crossrefs

Programs

  • PARI
    \\ See A218958 for PARI script file.
    a(n)=MaximalCyclicSubgroupCount(n, v->sum(i=1, #v, v[i]-1)%2==0); \\ Andrew Howroyd, Jul 17 2018

Extensions

a(3)-a(13) corrected by Liam Naughton, Jul 17 2018
Terms a(14) and beyond from Andrew Howroyd, Jul 17 2018

A303728 Triangle read by rows: T(n,k) is the number of labeled cyclic subgroups of order k in the alternating group A_n, 1 <= k <= A051593(n).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 3, 4, 1, 15, 10, 0, 6, 1, 45, 40, 45, 36, 1, 105, 175, 315, 126, 105, 120, 1, 315, 616, 1890, 336, 2520, 960, 0, 0, 0, 0, 0, 0, 0, 336, 1, 1323, 2884, 9450, 756, 18900, 4320, 0, 6720, 2268, 0, 3780, 0, 0, 3024, 1, 5355, 15520, 47250, 19656
Offset: 1

Views

Author

Andrew Howroyd, Jul 03 2018

Keywords

Examples

			Triangle begins:
1;
1;
1, 0, 1;
1, 3, 4;
1, 15, 10, 0, 6;
1, 45, 40, 45, 36;
1, 105, 175, 315, 126, 105, 120;
1, 315, 616, 1890, 336, 2520, 960, 0, 0, 0, 0, 0, 0, 0, 336;
...
		

Crossrefs

Row sums are A051636.

Programs

  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    G(n)={my(s=0); forpart(p=n, if(sum(i=1,#p,p[i]-1)%2==0, my(d=lcm(Vec(p))); s+=x^d*permcount(p)/eulerphi(d))); s}
    for(n=1, 10, print(Vecrev(G(n)/x)))

A062365 Number of nonisomorphic cyclic subgroups of the group A_n X A_n (where A_n is the alternating group of degree n).

Original entry on oeis.org

1, 1, 2, 4, 7, 10, 17, 19, 27, 35, 54, 58, 85, 96, 106, 122, 171, 209, 272, 312, 339, 384, 504, 568, 668, 754, 867, 981, 1226, 1357, 1658, 1859, 1991, 2318, 2526, 2833, 3393, 3730, 3976, 4418, 5244, 5829, 6798, 7468, 7998, 8770, 10282, 11354, 12676, 13911
Offset: 1

Views

Author

Vladeta Jovovic, Jul 11 2001

Keywords

Examples

			Set of orders of elements of A_8 X A_8 is {1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 105}, thus a(8)=19.
		

Crossrefs

Cf. A063182, A063183, A051636, A020902, (labeled case) A062364.

Extensions

More terms from David Wasserman, Jun 27 2002
Showing 1-6 of 6 results.