A051683 Triangle read by rows: T(n,k) = n!*k.
1, 2, 4, 6, 12, 18, 24, 48, 72, 96, 120, 240, 360, 480, 600, 720, 1440, 2160, 2880, 3600, 4320, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880, 725760, 1088640, 1451520, 1814400, 2177280, 2540160, 2903040, 3265920
Offset: 1
Examples
Table begins 1; 2, 4; 6, 12, 18; 24, 48, 72, 96; ...
Links
- Reinhard Zumkeller, Rows n=1..150 of triangle, flattened
- Tilman Piesk, Circular shifts to the right (Arrays of permutations).
Crossrefs
Programs
-
Haskell
a051683 n k = a051683_tabl !! (n-1) !! (k-1) a051683_row n = a051683_tabl !! (n-1) a051683_tabl = map fst $ iterate f ([1], 2) where f (row, n) = (row' ++ [head row' + last row'], n + 1) where row' = map (* n) row -- Reinhard Zumkeller, Mar 09 2012
-
Magma
[[Factorial(n)*k: k in [1..n]]: n in [1..15]]; // Vincenzo Librandi, Jun 15 2015
-
Mathematica
T[n_, k_] := n!*k; Flatten[Table[T[n, k], {n, 9}, {k, n}]] (* Jean-François Alcover, Apr 22 2011 *)
-
PARI
for(n=1,10, for(k=1,n, print1(n!*k, ", "))) \\ G. C. Greubel, Mar 27 2018
-
Python
from math import isqrt, factorial, comb def A051683(n): return factorial(a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(n-comb(a,2)) # Chai Wah Wu, Jun 25 2025
-
Scheme
(define (A051683 n) (* (A000142 (A002024 n)) (A002260 n))) ;; Antti Karttunen, Jul 02 2013
Formula
T(n,k) = A000142(A002024(n)) * A002260(n,k) = A002024(n)! * A002260(n,k) - Antti Karttunen, Jul 02 2013
Sum_{n>=1} 1/a(n) = e * (gamma - Ei(-1)) = A347952. - Amiram Eldar, Oct 13 2024
Comments