A051709 a(n) = sigma(n) + phi(n) - 2n.
0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 7, 0, 9, 0, 10, 2, 2, 0, 20, 1, 2, 4, 12, 0, 20, 0, 15, 2, 2, 2, 31, 0, 2, 2, 26, 0, 24, 0, 16, 12, 2, 0, 44, 1, 13, 2, 18, 0, 30, 2, 32, 2, 2, 0, 64, 0, 2, 14, 31, 2, 32, 0, 22, 2, 28, 0, 75, 0, 2, 14, 24, 2, 36, 0
Offset: 1
Keywords
Examples
a(5) = sigma(5) + phi(5) - 2*5 = 6 + 4 - 10 = 0.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (First 1000 terms from T. D. Noe.)
- Carlos Rivera, Puzzle 76. z(n)=sigma(n) + phi(n) - 2n, The Prime Puzzles and Problems Connection.
Crossrefs
Programs
-
Mathematica
Table[DivisorSigma[1,n]+EulerPhi[n]-2n,{n,80}] (* Harvey P. Dale, Apr 08 2015 *)
-
PARI
a(n)=sigma(n)+eulerphi(n)-2*n \\ Charles R Greathouse IV, Jul 05 2013
-
PARI
A051709(n) = -sumdiv(n,d,(d
Antti Karttunen, Mar 02 2018
Formula
Dirichlet g.f.: zeta(s-1) * (zeta(s) - 2 + 1/zeta(s)). - T. D. Noe, Aug 01 2002
From Antti Karttunen, Mar 02 2018: (Start)
a(n) = A001065(n) - A051953(n). [Difference between the sum of proper divisors of n and their Moebius-transform.]
a(n) = -Sum_{d|n, dA008683(n/d)*A001065(d). (End)
Sum_{k=1..n} a(k) = (3/(Pi^2) + Pi^2/12 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 03 2023
Comments