A051714 Numerators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)*(a(n,k) - a(n,k+1)), n >= 0, k >= 0.
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, -1, 1, 1, 2, 1, -1, 0, 1, 1, 5, 2, -3, -1, 1, 1, 1, 3, 5, -1, -1, 1, 0, 1, 1, 7, 5, 0, -4, 1, 1, -1, 1, 1, 4, 7, 1, -1, -1, 1, -1, 0, 1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5, 1, 1, 5, 3, 8, -7, -9, 5, 7, -5, 5, 0, 1, 1, 11, 15, 27, -28, -343, 295, 200, -44, -1017, 691, -691
Offset: 0
Examples
Table begins: 1 1/2 1/3 1/4 1/5 1/6 1/7 ... 1/2 1/3 1/4 1/5 1/6 1/7 ... 1/6 1/6 3/20 2/15 5/42 ... 0 1/30 1/20 2/35 5/84 ... -1/30 -1/30 -3/140 -1/105 ... Antidiagonals of numerator(a(n,k)): 1; 1, 1; 1, 1, 1; 1, 1, 1, 0; 1, 1, 3, 1, -1; 1, 1, 2, 1, -1, 0; 1, 1, 5, 2, -3, -1, 1; 1, 1, 3, 5, -1, -1, 1, 0; 1, 1, 7, 5, 0, -4, 1, 1, -1; 1, 1, 4, 7, 1, -1, -1, 1, -1, 0; 1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5;
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Programs
-
Magma
function a(n,k) if n eq 0 then return 1/(k+1); else return (k+1)*(a(n-1,k) - a(n-1,k+1)); end if; end function; A051714:= func< n,k | Numerator(a(n,k)) >; [A051714(k,n-k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 22 2023
-
Maple
a:= proc(n,k) option remember; `if`(n=0, 1/(k+1), (k+1)*(a(n-1,k)-a(n-1,k+1))) end: seq(seq(numer(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
-
Mathematica
nmax = 12; a[0, k_]:= 1/(k+1); a[n_, k_]:= a[n, k]= (k+1)(a[n-1, k]-a[n-1, k+1]); Numerator[Flatten[Table[a[n-k, k], {n,0,nmax}, {k, n, 0, -1}]]] (* Jean-François Alcover, Nov 28 2011 *)
-
SageMath
def a(n,k): if (n==0): return 1/(k+1) else: return (k+1)*(a(n-1, k) - a(n-1, k+1)) def A051714(n,k): return numerator(a(n, k)) flatten([[A051714(k, n-k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Apr 22 2023
Formula
From Fabián Pereyra, Jan 14 2023: (Start)
a(n,k) = numerator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)).
E.g.f.: A(x,t) = (x+log(1-t))/(1-t-exp(-x)) = (1+(1/2)*x+(1/6)*x^2/2!-(1/30)*x^4/4!+...)*1 + (1/2+(1/3)*x+(1/6)*x^2/2!+...)*t + (1/3+(1/4)*x+(3/20)*x^2/2!+...)*t^2 + .... (End)
Extensions
More terms from James Sellers, Dec 07 1999
Comments