A051779 Primes of form pq + 2 where p and q are twin primes.
17, 37, 22501, 32401, 57601, 72901, 176401, 324901, 1664101, 1742401, 5336101, 6502501, 7452901, 11289601, 11492101, 18147601, 21622501, 34222501, 34574401, 40449601, 45968401, 81000001, 85377601, 92736901, 110880901, 118592101
Offset: 1
Examples
The third term 22501 is a member of the sequence because 22501=149*151+2, 22501 is prime and {149,151} is a twin prime pair.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with (numtheory): for n from 1 to 2000 do if (ithprime(n+1)-ithprime(n)=2) then if (tau(ithprime(n)*ithprime(n+1)+2)=2) then print(ithprime(n),ithprime(n+1), ithprime(n)*ithprime(n+1)+2); fi; fi; od;
-
Mathematica
lst={};Do[p=Prime[n];If[Length[Divisors[p-2]]==4&&(Divisors[p-2][[3]]-Divisors[p-2][[2]])==2, AppendTo[lst, p]], {n, 6*10^5}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 08 2008 *) Select[(First[#]Last[#]+2)&/@Select[Partition[Prime[Range[2700]], 2,1], Last[#]-First[#]==2&],PrimeQ] (* Harvey P. Dale, Mar 11 2011 *) Select[2 + Times @@@ Select[ Partition[ Prime@ Range@ 1350, 2, 1], First[#] + 2 == Last[#] &], PrimeQ] (* Robert G. Wilson v, Mar 12 2001 *)
Formula
Extensions
Edited by R. J. Mathar, Aug 08 2008
Comments