A051797 Partial sums of A007585.
1, 12, 50, 140, 315, 616, 1092, 1800, 2805, 4180, 6006, 8372, 11375, 15120, 19720, 25296, 31977, 39900, 49210, 60060, 72611, 87032, 103500, 122200, 143325, 167076, 193662, 223300, 256215, 292640, 332816, 376992, 425425, 478380, 536130
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
- Index to sequences related to pyramidal numbers.
Crossrefs
Programs
-
GAP
List([0..40], n-> (2*n+1)*Binomial(n+3,3)); # G. C. Greubel, Aug 30 2019
-
Magma
/* A000027 convolved with A001107 (excluding 0): */ A001107:=func
; [&+[(n-i+1)*A001107(i): i in [1..n]]: n in [1..35]]; // Bruno Berselli, Dec 07 2012 -
Magma
[(2*n+1)*Binomial(n+3,3): n in [0..40]]; // G. C. Greubel, Aug 30 2019
-
Maple
seq((2*n+1)*binomial(n+3,3), n=0..40); # G. C. Greubel, Aug 30 2019
-
Mathematica
Table[(2*n+1)*Binomial[n+3,3], {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011, modified by G. C. Greubel, Aug 30 2019 *)
-
PARI
vector(40, n, (2*n-1)*binomial(n+2,3)) \\ G. C. Greubel, Aug 30 2019
-
Sage
[(2*n+1)*binomial(n+3,3) for n in (0..40)] # G. C. Greubel, Aug 30 2019
Formula
a(n) = binomial(n+3,3)*(2*n+1) = (n+1)*(n+2)*(n+3)*(2*n+1)/6.
G.f.: (1+7*x)/(1-x)^5.
a(n) = A080851(8,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (6 + 66*x + 81*x^2 + 25*x^3 + 2*x^4)*exp(x)/6. - G. C. Greubel, Aug 30 2019
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = (32*log(2) - 11)/10.
Sum_{n>=0} (-1)^n/a(n) = (8*Pi - 56*log(2) + 23)/10. (End)
Comments