cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051797 Partial sums of A007585.

Original entry on oeis.org

1, 12, 50, 140, 315, 616, 1092, 1800, 2805, 4180, 6006, 8372, 11375, 15120, 19720, 25296, 31977, 39900, 49210, 60060, 72611, 87032, 103500, 122200, 143325, 167076, 193662, 223300, 256215, 292640, 332816, 376992, 425425, 478380, 536130
Offset: 0

Views

Author

Barry E. Williams, Dec 11 1999

Keywords

Comments

a(n-1) is the n-th antidiagonal sum of the convolution array A213835. - Clark Kimberling, Jul 04 2012
Convolution of A000027 with A001107 (excluding 0). - Bruno Berselli, Dec 07 2012

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.

Crossrefs

Cf. A093565 ((8, 1) Pascal, column m=4).
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Programs

Formula

a(n) = binomial(n+3,3)*(2*n+1) = (n+1)*(n+2)*(n+3)*(2*n+1)/6.
G.f.: (1+7*x)/(1-x)^5.
a(n) = A080851(8,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (6 + 66*x + 81*x^2 + 25*x^3 + 2*x^4)*exp(x)/6. - G. C. Greubel, Aug 30 2019
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = (32*log(2) - 11)/10.
Sum_{n>=0} (-1)^n/a(n) = (8*Pi - 56*log(2) + 23)/10. (End)