A051844 a(n) = LCM_{k=0..n} (2^k + 1).
2, 6, 30, 90, 1530, 16830, 218790, 9407970, 2417848290, 137817352530, 28252557268650, 19296496614487950, 4650455684091595950, 12700394473254148539450, 41619192688853844763777650, 13775952780010622616810402150, 902834617343556174437903325704550
Offset: 0
Keywords
Examples
a(3) = lcm(2, 3, 5) = 30.
Programs
-
Mathematica
Module[{nn=20,c},c=Table[2^n+1,{n,0,nn}];Table[LCM@@Take[c,n],{n,nn}]] (* Harvey P. Dale, Aug 04 2017 *)
-
PARI
a(n) = {ret = 1; for (k=0, n, ret = lcm(ret, 2^k+1)); return(ret);} \\ Michel Marcus, May 24 2013
-
Python
from math import lcm from itertools import accumulate def aupton(nn): return list(accumulate((2**k+1 for k in range(nn+1)), lcm)) print(aupton(16)) # Michael S. Branicky, Jul 04 2022
Formula
a(n) = lcm(2, 3, 5, ..., 2^n + 1).
Product_{k=1..n} cyclotomic(2*k-2, 2). - Vladeta Jovovic, Apr 05 2004
Extensions
More terms from Harvey P. Dale, Aug 04 2017