A051867 15-gonal (or pentadecagonal) numbers: n*(13n-11)/2.
0, 1, 15, 42, 82, 135, 201, 280, 372, 477, 595, 726, 870, 1027, 1197, 1380, 1576, 1785, 2007, 2242, 2490, 2751, 3025, 3312, 3612, 3925, 4251, 4590, 4942, 5307, 5685, 6076, 6480, 6897, 7327, 7770, 8226, 8695, 9177, 9672, 10180, 10701
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[n (13n-11)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,1,15},50] (* Harvey P. Dale, Feb 29 2012 *)
-
PARI
a(n)=n*(13*n-11)/2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: x*(1+12*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 13*n+a(n-1)-12 (with a(0)=0) - Vincenzo Librandi, Aug 06 2010
a(0)=0, a(1)=1, a(2)=15, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Feb 29 2012
a(13*a(n)+79*n+1) = a(13*a(n)+79*n) + a(13*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 13/15. - Amiram Eldar, Jan 21 2021
E.g.f.: exp(x)*(x + 13*x^2/2). - Nikolaos Pantelidis, Feb 06 2023
a(n) = A000326(3*n-2) - 7*(n-1)^2. In general, if we let P(k,n) = the n-th k-gonal number, then P(5*k,n) = P(5,k*n-k+1) - A005449(k-1)*(n-1)^2. More generally, if we let SP(k,n) = the n-th second k-gonal number, then for m>2 and k>0, P(m*k,n) = P(m,k*n-k+1) - SP(m,k-1)*(n-1)^2. - Charlie Marion, May 21 2024
Comments