A051869 17-gonal (or heptadecagonal) numbers: a(n) = n*(15*n-13)/2.
0, 1, 17, 48, 94, 155, 231, 322, 428, 549, 685, 836, 1002, 1183, 1379, 1590, 1816, 2057, 2313, 2584, 2870, 3171, 3487, 3818, 4164, 4525, 4901, 5292, 5698, 6119, 6555, 7006, 7472, 7953, 8449, 8960, 9486, 10027, 10583, 11154, 11740, 12341
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A002378.
Programs
-
GAP
List([0..40], n-> n*(15*n-13)/2); # G. C. Greubel, Aug 30 2019
-
Magma
[n*(15*n-13)/2: n in [0..40]]; // G. C. Greubel, Aug 30 2019
-
Maple
A051869 := proc(n) n*(15*n-13)/2 ; end proc: seq(A051869(n),n=0..30) ; # R. J. Mathar, Feb 05 2011
-
Mathematica
Table[n*(15*n - 13)/2, {n,0,40}] (* Robert Price, Oct 11 2018 *) PolygonalNumber[17,Range[0,50]] (* Harvey P. Dale, Dec 14 2022 *)
-
PARI
a(n)=n*(15*n-13)/2 \\ Charles R Greathouse IV, Jan 24 2014
-
Sage
[n*(15*n-13)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
Formula
G.f.: x*(1+14*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = a(n-1) + 15*n - 14 with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = A226489(n) - n. - Bruno Berselli, Jun 11 2013
a(15*a(n) + 106*n + 1) = a(15*a(n) + 106*n) + a(15*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: x*(2 + 15*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
Product_{n>=2} (1 - 1/a(n)) = 15/17. - Amiram Eldar, Jan 22 2021
Comments