A051873 21-gonal numbers: a(n) = n*(19n - 17)/2.
0, 1, 21, 60, 118, 195, 291, 406, 540, 693, 865, 1056, 1266, 1495, 1743, 2010, 2296, 2601, 2925, 3268, 3630, 4011, 4411, 4830, 5268, 5725, 6201, 6696, 7210, 7743, 8295, 8866, 9456, 10065, 10693, 11340, 12006, 12691, 13395, 14118
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
A051873 := proc(n) n*(19*n-17)/2 ;end proc: seq(A051873(n),n=0..30) ; # R. J. Mathar, Feb 05 2011
-
Mathematica
PolygonalNumber[21,Range[0,40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 22 2016 *) Table[n*(19*n - 17)/2, {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
-
PARI
n*(19*n-17)/2 \\ Charles R Greathouse IV, Jan 24 2014
Formula
G.f.: x*(1+18*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 19*n+a(n-1)-18 with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = A226490(n) - n. - Bruno Berselli, Jun 11 2013
a(19*a(n)+172*n+1) = a(19*a(n)+172*n) + a(19*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 19/21. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 19*x^2/2). - Nikolaos Pantelidis, Feb 06 2023
Comments