A051874 22-gonal numbers: a(n) = n*(10*n-9).
0, 1, 22, 63, 124, 205, 306, 427, 568, 729, 910, 1111, 1332, 1573, 1834, 2115, 2416, 2737, 3078, 3439, 3820, 4221, 4642, 5083, 5544, 6025, 6526, 7047, 7588, 8149, 8730, 9331, 9952, 10593, 11254, 11935, 12636, 13357, 14098, 14859
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+20 od: seq(a[n], n=0..39); # Zerinvary Lajos, Feb 18 2008
-
Mathematica
Table[n (10 n -9), {n, 0, 40}] (* Harvey P. Dale, Sep 19 2011 *) CoefficientList[Series[x (1 + 19 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
-
PARI
a(n)=n*(10*n-9) \\ Charles R Greathouse IV, Jan 24 2014
Formula
a(n) = 2*a(n-1)-a(n-2)+20 with n>1, a(0)=0, a(1)=1. - Zerinvary Lajos, Feb 18 2008
a(n) = 20*n+a(n-1)-19 with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+19*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(20*a(n)+191*n+1) = a(20*a(n)+191*n) + a(20*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 10/11. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 10*x^2). - Nikolaos Pantelidis, Feb 05 2023
Comments