cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051895 Partial sums of second pentagonal numbers with even index (A049453).

Original entry on oeis.org

0, 7, 33, 90, 190, 345, 567, 868, 1260, 1755, 2365, 3102, 3978, 5005, 6195, 7560, 9112, 10863, 12825, 15010, 17430, 20097, 23023, 26220, 29700, 33475, 37557, 41958, 46690, 51765, 57195, 62992, 69168, 75735, 82705, 90090, 97902, 106153, 114855, 124020, 133660
Offset: 0

Views

Author

Barry E. Williams, Dec 17 1999

Keywords

Comments

For A049453(n+1), the corresponding formula would be a(n)=(n+1)*(6*n+7) and its partial sums would be given by a(n)=(n+1)*(n+2)*(4*n+7)/2.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • Magma
    I:=[0, 7, 33, 90]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 27 2012
    
  • Mathematica
    Table[(n(4n-1)(n-1))/2,{n,40}]  (* Harvey P. Dale, Mar 11 2011 *)
    CoefficientList[Series[x*(7+5*x)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Apr 27 2012 *)
  • PARI
    a(n) = n*(n+1)*(4*n+3)/2; \\ Altug Alkan, Apr 20 2018

Formula

a(n) = n*(n+1)*(4*n+3)/2.
G.f.: x*(7+5*x)/(1-x)^4. - Colin Barker, Jan 12 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Apr 27 2012
a(n) = A002492(n) + A016061(n). - J. M. Bergot, Apr 20 2018