A051895 Partial sums of second pentagonal numbers with even index (A049453).
0, 7, 33, 90, 190, 345, 567, 868, 1260, 1755, 2365, 3102, 3978, 5005, 6195, 7560, 9112, 10863, 12825, 15010, 17430, 20097, 23023, 26220, 29700, 33475, 37557, 41958, 46690, 51765, 57195, 62992, 69168, 75735, 82705, 90090, 97902, 106153, 114855, 124020, 133660
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[0, 7, 33, 90]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 27 2012
-
Mathematica
Table[(n(4n-1)(n-1))/2,{n,40}] (* Harvey P. Dale, Mar 11 2011 *) CoefficientList[Series[x*(7+5*x)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Apr 27 2012 *)
-
PARI
a(n) = n*(n+1)*(4*n+3)/2; \\ Altug Alkan, Apr 20 2018
Formula
a(n) = n*(n+1)*(4*n+3)/2.
G.f.: x*(7+5*x)/(1-x)^4. - Colin Barker, Jan 12 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Apr 27 2012
Comments