cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A045947 Triangles in open triangular matchstick arrangement (triangle minus one side) of side n.

Original entry on oeis.org

0, 0, 2, 7, 17, 33, 57, 90, 134, 190, 260, 345, 447, 567, 707, 868, 1052, 1260, 1494, 1755, 2045, 2365, 2717, 3102, 3522, 3978, 4472, 5005, 5579, 6195, 6855, 7560, 8312, 9112, 9962, 10863, 11817, 12825, 13889, 15010, 16190, 17430, 18732, 20097, 21527
Offset: 0

Views

Author

Keywords

Crossrefs

First differences of A082289.

Programs

  • Magma
    [Floor((4*n^3+2*n^2-4*n)/16): n in [0..50]]; // Vincenzo Librandi, Aug 29 2011
  • Mathematica
    LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 2, 7, 17}, 45] (* Jean-François Alcover, Dec 12 2016 *)
    CoefficientList[Series[(2x^2+x^3)/((1-x)^3(1-x^2)),{x,0,50}],x] (* Harvey P. Dale, Jun 26 2021 *)
  • PARI
    a(n)=(4*n^3+2*n^2-4*n)\16
    

Formula

G.f.: (2*x^2+x^3)/((1-x)^3*(1-x^2)). - Michael Somos
a(n) = (1/16)*(2*n*(2*n^2+n-2)+(-1)^n-1). - Bruno Berselli, Aug 29 2011
a(2*n) = A000447(n)+A002412(n); a(2*n+1) = A051895(n). - J. M. Bergot, Apr 12 2018
E.g.f.: (x*(1 + 7*x + 2*x^2)*cosh(x) - (1 - x - 7*x^2 - 2*x^3)*sinh(x))/8. - Stefano Spezia, Aug 22 2023

A135713 a(n) = n*(n+1)*(4*n+1)/2.

Original entry on oeis.org

0, 5, 27, 78, 170, 315, 525, 812, 1188, 1665, 2255, 2970, 3822, 4823, 5985, 7320, 8840, 10557, 12483, 14630, 17010, 19635, 22517, 25668, 29100, 32825, 36855, 41202, 45878, 50895, 56265, 62000, 68112, 74613, 81515, 88830, 96570, 104747, 113373, 122460, 132020
Offset: 0

Views

Author

N. J. A. Sloane, Mar 05 2008

Keywords

Comments

This sequence is related to A045944 by a(n) = n*A045944(n)-Sum_{i=0..n-1} A045944(i); this is the case d=6 in the identity n^2*(d*n+d-2)/2 - sum(k*(d*k+d-2)/2, k=0..n-1) = n*(n+1)*(2*d*n+d-3)/6 . - Bruno Berselli, Nov 19 2010
Bisection (even part) of A002717. See the Conway and Guy reference. - Wolfdieter Lang, Apr 16 2020

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 83.

Crossrefs

Bisection of A002717 (even part).

Programs

  • Magma
    [n*(n+1)*(4*n+1)/2: n in [0..40]];  // Bruno Berselli, Aug 23 2011
  • Mathematica
    LinearRecurrence[{4,-6,4,-1}, {0, 5, 27, 78}, 50] (* Vincenzo Librandi, Mar 01 2012 *)
    Table[n*(n+1)*(4*n+1)/2,{n,0,25}] (* G. C. Greubel, Oct 29 2016 *)
    Table[PolygonalNumber[n](4n+1),{n,0,40}] (* Harvey P. Dale, Apr 26 2025 *)

Formula

O.g.f.: x*(7*x+5)/(x-1)^4. - R. J. Mathar, Apr 22 2008.
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) for n>3. - Bruno Berselli, Nov 19 2010
a(-n-1) = -A051895(n). - Bruno Berselli, Aug 23 2011
E.g.f.: (1/2)*x*(10 + 17*x + 4*x^2)*exp(x). - G. C. Greubel, Oct 29 2016
Sum_{n>=1} 1/a(n) = 2*(5 - 2*Pi/3 - 4*log(2)) = 0.26603235073404654... - Ilya Gutkovskiy, Oct 29 2016

A192796 Molecular topological indices of the crown graphs.

Original entry on oeis.org

0, 28, 132, 360, 760, 1380, 2268, 3472, 5040, 7020, 9460, 12408, 15912, 20020, 24780, 30240, 36448, 43452, 51300, 60040, 69720, 80388, 92092, 104880, 118800, 133900, 150228, 167832, 186760, 207060
Offset: 1

Views

Author

Eric W. Weisstein, Jul 10 2011

Keywords

Comments

Crown graphs are defined for n>=3; extended to n=1 using the closed form.

Programs

  • Magma
    I:=[0, 28, 132, 360]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
  • Mathematica
    CoefficientList[Series[4*x*(5*x+7)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 04 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,28,132,360},30] (* Harvey P. Dale, Sep 04 2024 *)
  • PARI
    a(n) = 2*n*(n-1)*(4*n-1) \\ Charles R Greathouse IV, Jul 10 2011
    

Formula

a(n) = 2*(n-1)*n*(4*n-1).
a(n) = 4*A051895(n).
G.f.: 4*x^2*(5*x+7)/(1-x)^4. - Vincenzo Librandi, Jul 04 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jul 04 2012

A096200 a(n) = n*(n-1)*(n-2)*(3*n-2)/6.

Original entry on oeis.org

0, 0, 0, 7, 40, 130, 320, 665, 1232, 2100, 3360, 5115, 7480, 10582, 14560, 19565, 25760, 33320, 42432, 53295, 66120, 81130, 98560, 118657, 141680, 167900, 197600, 231075, 268632, 310590, 357280, 409045, 466240, 529232, 598400, 674135, 756840, 846930, 944832
Offset: 0

Views

Author

N. J. A. Sloane, Jul 27 2004

Keywords

Crossrefs

Cf. A051895.

Programs

Formula

From Stefano Spezia, Aug 31 2023: (Start)
G.f.: x^3*(7 + 5*x)/(1 - x)^5.
a(n+2) - a(n+1) = A051895(n). (End)
Showing 1-4 of 4 results.