A051903 Maximum exponent in the prime factorization of n.
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1
Offset: 1
Examples
For n = 72 = 2^3*3^2, a(72) = max(exponents) = max(3,2) = 3.
Links
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
- Benjamin Merlin Bumpus and Zoltan A. Kocsis, Spined categories: generalizing tree-width beyond graphs, arXiv:2104.01841 [math.CO], 2021.
- Cao Hui-Zhong, The Asymptotic Formulas Related to Exponents in Factoring Integers, Math. Balkanica, Vol. 5 (1991), Fasc. 2.
- Ivan Niven, Averages of Exponents in Factoring Integers, Proc. Amer. Math. Soc., Vol. 22, No. 2 (1969), pp. 356-360.
- Eric Weisstein's World of Mathematics, Niven's Constant.
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Programs
-
Haskell
a051903 1 = 0 a051903 n = maximum $ a124010_row n -- Reinhard Zumkeller, May 27 2012
-
Maple
A051903 := proc(n) a := 0 ; for f in ifactors(n)[2] do a := max(a,op(2,f)) ; end do: a ; end proc: # R. J. Mathar, Apr 03 2012 # second Maple program: a:= n-> max(0, seq(i[2], i=ifactors(n)[2])): seq(a(n), n=1..120); # Alois P. Heinz, May 09 2020
-
Mathematica
Table[If[n == 1, 0, Max @@ Last /@ FactorInteger[n]], {n, 100}] (* Ray Chandler, Jan 24 2006 *)
-
PARI
a(n)=if(n>1,vecmax(factor(n)[,2]),0) \\ Charles R Greathouse IV, Oct 30 2012
-
Python
from sympy import factorint def A051903(n): return max(factorint(n).values()) if n > 1 else 0 # Chai Wah Wu, Jan 03 2015
-
Scheme
;; With memoization-macro definec. (definec (A051903 n) (if (= 1 n) 0 (max (A067029 n) (A051903 (A028234 n))))) ;; Antti Karttunen, Aug 08 2016
Formula
Conjecture: a(n) = a(A003557(n)) + 1. This relation together with a(1) = 0 defines the sequence. - Velin Yanev, Sep 02 2017
Comment from David J. Seal, Sep 18 2017: (Start)
This conjecture seems very easily provable to me: if the factorization of n is p1^k1 * p2^k2 * ... * pm^km, then the factorization of the largest squarefree divisor of n is p1 * p2 * ... * pm. So the factorization of A003557(n) is p1^(k1-1) * p2^(k2-1) * ... * pm^(km-1) if exponents of zero are allowed, or with the product terms that have an exponent of zero removed if they're not (if that results in an empty product, consider it to be 1 as usual).
The formula then follows from the fact that provided all ki >= 1, Max(k1, k2, ..., km) = Max(k1-1, k2-1, ..., km-1) + 1, and Max(k1-1, k2-1, ..., km-1) is not altered by removing the ki-1 values that are 0, provided we treat the empty Max() as being 0. That proves the formula and the provisos about empty products and Max() correspond to a(1) = 0.
Also, for any n, applying the formula Max(k1, k2, ..., km) times to n = p1^k1 * p2^k2 * ... * pm^km reduces all the exponents to zero, i.e., to the case a(1) = 0, so that case and the formula generate the sequence. (End)
Sum_{k=1..n} (-1)^k * a(k) ~ c * n, where c = Sum_{k>=2} 1/((2^k-1)*zeta(k)) = 0.44541445377638761933... . - Amiram Eldar, Jul 28 2024
a(n) <= log(n)/log(2). - Hal M. Switkay, Jul 03 2025
Comments