cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051923 Partial sums of A051836.

Original entry on oeis.org

1, 9, 42, 140, 378, 882, 1848, 3564, 6435, 11011, 18018, 28392, 43316, 64260, 93024, 131784, 183141, 250173, 336490, 446292, 584430, 756470, 968760, 1228500, 1543815, 1923831, 2378754, 2919952, 3560040, 4312968, 5194112, 6220368, 7410249, 8783985, 10363626
Offset: 0

Views

Author

Barry E. Williams, Dec 19 1999

Keywords

Comments

If Y is a 3-subset of an n-set X then, for n >= 8, a(n-8) is the number of 8-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
a(n) is the n-th antidiagonal sum of the convolution array A213551. - Clark Kimberling, Jun 17 2012

Examples

			From the third formula: a(4) = 15+60+108+120+75 = 378. - _Bruno Berselli_, Sep 04 2013
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.

Crossrefs

Cf. A093560 ((3, 1) Pascal, column m=6).

Programs

Formula

a(n) = binomial(n+5, 5)*(n+2)/2.
G.f.: (1+2*x)/(1-x)^7.
a(n) = Sum_{k=1..n+1} k*A000217(k)*A000217(n-k+2). - Bruno Berselli, Sep 04 2013
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 1205/18 - 20*Pi^2/3.
Sum_{n>=0} (-1)^n/a(n) = 10*Pi^2/3 - 320*log(2)/3 + 755/18. (End)