A051923 Partial sums of A051836.
1, 9, 42, 140, 378, 882, 1848, 3564, 6435, 11011, 18018, 28392, 43316, 64260, 93024, 131784, 183141, 250173, 336490, 446292, 584430, 756470, 968760, 1228500, 1543815, 1923831, 2378754, 2919952, 3560040, 4312968, 5194112, 6220368, 7410249, 8783985, 10363626
Offset: 0
Examples
From the third formula: a(4) = 15+60+108+120+75 = 378. - _Bruno Berselli_, Sep 04 2013
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[Binomial(n+5, 5)*(n+2)/2: n in [0..40]]; // Vincenzo Librandi, Dec 27 2018
-
Mathematica
CoefficientList[Series[(1 + 2 x)/(1 - x)^7, {x, 0, 25}], x] (* Harvey P. Dale, Mar 13 2011 *) Nest[Accumulate,Range[1,120,3],5] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *) Table[Binomial[n + 5, 5] (n + 2) / 2, {n, 0, 35}] (* Vincenzo Librandi, Dec 27 2018 *)
Formula
a(n) = binomial(n+5, 5)*(n+2)/2.
G.f.: (1+2*x)/(1-x)^7.
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 1205/18 - 20*Pi^2/3.
Sum_{n>=0} (-1)^n/a(n) = 10*Pi^2/3 - 320*log(2)/3 + 755/18. (End)
Comments