cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051927 Number of independent vertex sets in the n-prism graph Y_n = K_2 X C_n (n > 2).

Original entry on oeis.org

3, 1, 7, 13, 35, 81, 199, 477, 1155, 2785, 6727, 16237, 39203, 94641, 228487, 551613, 1331715, 3215041, 7761799, 18738637, 45239075, 109216785, 263672647, 636562077, 1536796803, 3710155681, 8957108167, 21624372013, 52205852195
Offset: 0

Views

Author

Stephen G Penrice, Dec 19 1999

Keywords

Comments

For n>1, a(n) is also the number of ways to place k non-attacking wazirs on a 2 X n horizontal cylinder, summed over all k>=0 (wazir is a leaper [0,1]). - Vaclav Kotesovec, May 08 2012
Also the number of vertex covers for Y_n. - Eric W. Weisstein, Jan 04 2014

Crossrefs

Column 2 of A286513 and row 2 of A287376.

Programs

  • Magma
    I:=[3, 1, 7]; [n le 3 select I[n] else Self(n-1) + 3*Self(n-2) + Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 04 2013
    
  • Maple
    A051927 := x -> (1+sqrt(2))^x+(-1)^x+(1-sqrt(2))^x;
    seq(simplify(A051927(i)),i=0..28); # Peter Luschny, Aug 13 2012
  • Mathematica
    CoefficientList[Series[(3 - 2 x - 3 x^2) / ((1 - 2 x - x^2) (1 + x)), {x, 0, 40}], x] (* Vincenzo Librandi, May 04 2013 *)
    Table[LucasL[n, 2] + (-1)^n, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    LinearRecurrence[{1, 3, 1}, {1, 7, 13}, {0, 20}] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n)=polcoeff((3-2*x-3*x^2)/(1-2*x-x^2)/(1+x)+x*O(x^n),n)
    
  • PARI
    x='x+O('x^66); Vec( (3-2*x-3*x^2)/((1-2*x-x^2)*(1+x)) ) \\ Joerg Arndt, May 04 2013
  • Sage
    def A051927(x) : return (1+sqrt(2))^x+(-1)^x+(1-sqrt(2))^x
    [A051927(i).round() for i in (0..28)] # Peter Luschny, Aug 13 2012
    

Formula

a(n) = a(n-1) + 3*a(n-2) + a(n-3).
G.f.: (3-2x-3x^2)/((1-2x-x^2)(1+x)). - Michael Somos, Apr 07 2003
Let A=[0, 1, 1;1, 1, 1;1, 1, 0] be the adjacency matrix of a triangle with a loop at a vertex. Then a(n)=trace(A^n). a(n)=(-1)^n+(1-sqrt(2))^n+(1+sqrt(2))^n. - Paul Barry, Jul 22 2004
a(n) = A002203(n) + (-1)^n. - Vladimir Reshetnikov, Sep 15 2016
a(n)+a(n+1) = 4*A000129(n+1). - R. J. Mathar, Feb 13 2020
E.g.f.: cosh(x) + 2*exp(x)*cosh(sqrt(2)*x) - sinh(x). - Stefano Spezia, Mar 31 2024