cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051936 Truncated triangular numbers: a(n) = n*(n+1)/2 - 9.

Original entry on oeis.org

1, 6, 12, 19, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 369, 397, 426, 456, 487, 519, 552, 586, 621, 657, 694, 732, 771, 811, 852, 894, 937, 981, 1026, 1072, 1119, 1167, 1216, 1266, 1317, 1369, 1422, 1476
Offset: 4

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 21 1999

Keywords

Comments

Equals binomial transform of [1, 5, 1, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
Numbers m > 0 such that 8m+73 is a square. - Bruce J. Nicholson, Jul 29 2017

Examples

			Illustration of the initial terms:
                                                          .
                              .                         .   .
      .                     .   .                     o   o   o
    .   .                 o   o   o                 o   o   o   o
  .   o   .             .   o   o   .             .   o   o   o   .
.   .   .   .         .   .   o   .   .         .   .   o   o   .   .
----------------------------------------------------------------------
      1                       6                           12
----------------------------------------------------------------------
- _Bruno Berselli_, Oct 13 2016
		

Crossrefs

Cf. A000217.

Programs

Formula

G.f.: x^4*(-1-3*x+3*x^2) / (x-1)^3.
a(n) = n + a(n-1) for n>4, a(4)=1. - Vincenzo Librandi, Aug 06 2010
a(n) = 2*A000217(n-3) - A000217(n-6), with A000217(-2)=1, A000217(-1)=0. - Bruno Berselli, Oct 13 2016
Sum_{n>=4} 1/a(n) = 53/72 + 2*Pi*tan(sqrt(73)*Pi/2)/sqrt(73). - Amiram Eldar, Dec 13 2022