cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A052033 Primes base 10 that are never primes in any smaller base b, 2<=b<10, expansions interpreted as decimal numbers.

Original entry on oeis.org

263, 269, 347, 397, 431, 461, 479, 499, 569, 599, 607, 677, 683, 719, 769, 797, 821, 929, 941, 1019, 1031, 1049, 1051, 1061, 1069, 1103, 1181, 1223, 1229, 1237, 1297, 1307, 1367, 1399, 1409, 1439, 1453, 1487, 1489, 1523, 1553, 1559, 1571, 1619, 1637
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

A038537 Primes base 10 that remain primes in eight bases b, 2<=b<=10, when the expansions are interpreted as decimal numbers.

Original entry on oeis.org

2, 3, 379081, 59771671, 146752831, 764479423, 1479830551, 3406187401, 5631714889, 7740024337, 8256310441, 8772257161, 9522879913, 10350894331, 12852250993, 14261996563, 16082349433, 16199980009, 17727606151, 18172964503, 18294784903, 19393314433, 19472325391, 20582035993
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Extensions

a(4)-a(7) found by Jack Brennen (see link) added by Patrick De Geest, Dec 15 1999
Terms beyond a(7) from Sebastian Petzelberger, Mar 21 2015

A052027 Primes in base 10 that remain primes in seven bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

5, 9241, 17791, 330289, 391231, 1005481, 1210483, 2378143, 2469241, 2779939, 2840041, 6817501, 8320831, 9865711, 10871407, 11087191, 12259603, 13645393, 15665833, 16707883, 17694463, 25751863, 27794287, 31488481
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range@ 100000], Count[PrimeQ /@ Table[FromDigits[IntegerDigits[#, i]], {i, 2, 10}], True] == 7 &] (* Michael De Vlieger, Mar 21 2015, after Harvey P. Dale at A052032 *)

Extensions

Missing terms 2378143 and 2469241 added by Sebastian Petzelberger, Mar 21 2015

A052028 Primes base 10 that remain primes in six bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

157, 523, 1249, 1483, 1753, 4051, 9187, 10531, 22921, 25981, 29599, 35899, 51031, 57751, 67579, 79939, 98323, 103561, 110581, 148471, 150193, 150343, 249703, 259183, 277063, 278623, 331081, 335833, 353401, 391903, 424819, 435553, 504547
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

A052029 Primes base 10 that remain primes in five bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

7, 43, 71, 163, 199, 283, 307, 367, 463, 571, 757, 1033, 1163, 1627, 1873, 2683, 3041, 3691, 3967, 4483, 4651, 4729, 4951, 4973, 5407, 6073, 6961, 7351, 7537, 8053, 8599, 9103, 9817, 10321, 10831, 11251, 11383, 11743, 12433, 12853, 13219, 14419, 14479
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range@ 1800], Count[PrimeQ /@ Table[FromDigits[IntegerDigits[#, i]], {i, 2, 10}], True] == 5 &] (* Michael De Vlieger, Mar 20 2015, after Harvey P. Dale at A052032 *)
  • PARI
    lista(nn, nb=5) = {forprime(p=2, nn, if (sum(b=2, 10, isprime(subst(Pol(digits(p, b)), x, 10))) == nb, print1(p, ", ")););} \\ Michel Marcus, Mar 21 2015

A052030 Primes base 10 that remain primes in four bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

19, 23, 37, 67, 79, 103, 127, 191, 193, 211, 229, 277, 311, 313, 337, 379, 409, 433, 443, 577, 613, 619, 631, 643, 647, 653, 787, 857, 883, 907, 919, 947, 997, 1021, 1039, 1087, 1097, 1123, 1171, 1279, 1423, 1429, 1447, 1459, 1471, 1567, 1597, 1669, 1693
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Examples

			19 is 103_4, 31_6, 23_8 and 19_10.
		

Crossrefs

Programs

A052031 Primes base 10 that remain primes in three bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

11, 13, 17, 29, 31, 47, 59, 61, 83, 89, 97, 101, 109, 149, 151, 179, 181, 197, 227, 241, 251, 281, 331, 349, 353, 359, 373, 383, 419, 421, 439, 449, 457, 487, 503, 541, 547, 563, 587, 601, 617, 659, 673, 709, 727, 733, 743, 751, 773, 811, 823, 877, 953, 967
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Examples

			11 is 23_4, 13_8 and 11_10.
		

Crossrefs

Programs

A256351 Composites in base 10 that remain composite in exactly seven bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

8, 9, 15, 16, 21, 22, 25, 28, 34, 75, 87, 91, 93, 94, 106, 111, 123, 141, 143, 145, 147, 155, 172, 201, 205, 214, 217, 237, 255, 298, 304, 305, 363, 371, 376, 377, 385, 388, 395, 403, 411, 423, 428, 442, 458, 466, 471, 473, 483, 495, 501, 505, 507, 531, 533
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(b,x) local L,i;
    L:= convert(x,base,b);
    isprime(add(10^(i-1)*L[i],i=1..nops(L)))
    end proc:
    select(t -> not isprime(t) and nops(select(f,[$2..9],t))=2, [$1..1000]); # Robert Israel, Mar 26 2015
  • Mathematica
    fQ[n_] := CompositeQ@ n && Count[ CompositeQ[ FromDigits[ IntegerDigits[n, #]] & /@ Range[2, 9]], True] == 6; Select[ Range@ 500, fQ] (* Robert G. Wilson v, Mar 26 2015 *)

A256355 Composites in base 10 that remain composite in exactly three bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

11233, 42241, 98281, 131239, 161953, 315151, 358135, 606553, 692263, 785851, 1114081, 1130419, 1525777, 1906363, 3369313, 3403081, 3880873, 5616721, 6036103, 6947611, 7253191, 7516783, 7886593, 8799127, 8811223, 9108289, 9113203, 9195313, 9450361, 9600769
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Examples

			11233 = 324413_5 and 324413_10 is composite; 11233 = 44515_7 and 44515_10 is composite; 11233_10 itself is composite. Interpreted in base 2, 3, 4, 6, 8, and 9 the result is prime. Hence 11233 is in this sequence.
		

Crossrefs

Programs

Showing 1-9 of 9 results.