cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052103 The third of the three sequences associated with the polynomial x^3 - 2.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 27, 63, 144, 324, 729, 1647, 3726, 8424, 19035, 43011, 97200, 219672, 496449, 1121931, 2535462, 5729940, 12949227, 29264247, 66134880, 149459580, 337766841, 763326423, 1725057486, 3898493712, 8810287947, 19910555163
Offset: 0

Views

Author

Ashok K. Gupta and Ashok K. Mittal (akgjkiapt(AT)hotmail.com), Jan 20 2000

Keywords

Comments

If x^3 = 2 and n >= 0, then there are unique integers a, b, c such that (1 + x)^n = a + b*x + c*x^2. The coefficient c is a(n).

Examples

			G.f. = x^2 + 3*x^3 + 6*x^4 + 12*x^5 + 27*x^6 + 63*x^7 + 144*x^8 + ...
		

References

  • Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
  • R. Schoof, Catalan's Conjecture, Springer-Verlag, 2008, pp. 17-18.

Crossrefs

Programs

  • Magma
    I:=[0,0,1]; [n le 3 select I[n] else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..41]]; // G. C. Greubel, Apr 15 2021
    
  • Maple
    A052103:= n-> add(2^j*binomial(n, 3*j+2), j = 0..floor(1/3*n));
    seq(A052103(n), n = 0..40); # G. C. Greubel, Apr 15 2021
  • Mathematica
    LinearRecurrence[{3,-3,3}, {0,0,1}, 32] (* Ray Chandler, Sep 23 2015 *)
  • PARI
    {a(n) = polcoeff( lift( Mod(1 + x, x^3 - 2)^n ), 2)} /* Michael Somos, Aug 05 2009 */
    
  • PARI
    {a(n) = sum(k=0, n\3, 2^k * binomial(n, 3*k + 2))} /* Michael Somos, Aug 05 2009 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( x^2 / (1 - 3*x + 3*x^2 - 3*x^3) + x * O(x^n), n))} /* Michael Somos, Aug 05 2009 */
    
  • Sage
    [sum(2^j*binomial(n, 3*j+2) for j in (0..n//3)) for n in (0..40)] # G. C. Greubel, Apr 15 2021

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3), n > 2.
a(n) = Sum_{0..floor(n/3)}, 2^k * binomial(n, 3*k+2). - Ralf Stephan, Aug 30 2004
From Paul Curtz, Mar 10 2008: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 6*a(n-3) - 3*a(n-4).
a(n) is binomial transform of 0, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32 (see A077958).
a(n) is a sequence identical to half its third differences. (End)
From R. J. Mathar, Apr 01 2008: (Start)
O.g.f.: x^2/(1 - 3*x + 3*x^2 - 3*x^3).
a(n+1) - a(n) = A052102(n). (End)

Extensions

More terms from R. J. Mathar, Apr 01 2008