Original entry on oeis.org
0, 1, 2, 3, 6, 9, 12, 15, 21, 27, 36, 45, 63, 81, 99, 144, 180, 225, 324, 405, 513, 729, 918, 1161, 1647, 2079, 2619, 3726, 4698, 5913, 8424, 10611, 13365, 19035, 23976, 30213, 43011, 54189, 68283, 97200, 122472, 154305, 219672, 276777, 348705, 496449, 625482
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,3).
-
I:=[6,9,12,15,21,27,36,45,63]; [0,1,2,3] cat [n le 9 select I[n] else 3*(Self(n-3) -Self(n-6) +Self(n-9)): n in [1..51]]; // G. C. Greubel, Apr 15 2021
-
LinearRecurrence[{0,0,3,0,0,-3,0,0,3}, {0,1,2,3,6,9,12,15,21,27,36,45,63}, 50] (* G. C. Greubel, Apr 15 2021 *)
-
[( x*(1+2*x+3*x^2+6*x^9+3*x^5+3*x^10+9*x^11+3*x^3+3*x^4)/(1-3*x^3+3*x^6-3*x^9) ).series(x,n+1).list()[n] for n in (0..50)] # G. C. Greubel, Apr 15 2021
A052101
One of the three sequences associated with the polynomial x^3 - 2.
Original entry on oeis.org
1, 1, 1, 3, 9, 21, 45, 99, 225, 513, 1161, 2619, 5913, 13365, 30213, 68283, 154305, 348705, 788049, 1780947, 4024809, 9095733, 20555613, 46454067, 104982561, 237252321, 536171481, 1211705163, 2738358009, 6188472981, 13985460405
Offset: 0
Ashok K. Gupta and Ashok K. Mittal (akgjkiapt(AT)hotmail.com), Jan 20 2000
From the Schoof reference, pp. 17, 18: Set pi = 1 + sqrt[3]{2}. For every integer k >= 0, there are unique a_k,b_k,c_k in Q such that pi^k = a_k + b_k sqrt[3]{2} + c_k sqrt[3]{4}. The coefficients a_k,b_k,c_k are actually in Z:
Coefficients a_k, b_k, c_k:
k 0 1 2 3 4 5 6
----------------------------------------------
a_k 1 1 1 3 9 21 45
b_k 0 1 2 3 6 15 36
c_k 0 0 1 3 6 12 27
----------------------------------------------
G.f. = 1 + x + x^2 + 3*x^3 + 9*x^4 + 21*x^5 + 45*x^6 + 99*x^7 + 225*x^8 + ...
- Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
- R. Schoof, Catalan's Conjecture, Springer-Verlag, 2008, pp. 17-18.
-
[n le 3 select 1 else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..41]]; // G. C. Greubel, Apr 15 2021
-
A052101 := n -> add(2^j*binomial(n, 3*j), j = 0..floor(n/3));
seq(A052101(n), n = 0..40); # G. C. Greubel, Apr 15 2021
-
LinearRecurrence[{3, -3, 3},{1, 1, 1},31] (* Ray Chandler, Sep 23 2015 *)
-
{a(n) = polcoeff( lift( Mod(1 + x, x^3 - 2)^n ), 0)} /* Michael Somos, Aug 05 2009 */
-
{a(n) = sum(k=0, n\3, 2^k * binomial(n, 3*k))} /* Michael Somos, Aug 05 2009 */
-
{a(n) = if( n<0, 0, polcoeff( (1 - x)^2 / (1 - 3*x + 3*x^2 - 3*x^3) + x * O(x^n), n))} /* Michael Somos, Aug 05 2009 */
-
[sum(2^j*binomial(n, 3*j) for j in (0..n//3)) for n in (0..40)] # G. C. Greubel, Apr 15 2021
A052102
The second of the three sequences associated with the polynomial x^3 - 2.
Original entry on oeis.org
0, 1, 2, 3, 6, 15, 36, 81, 180, 405, 918, 2079, 4698, 10611, 23976, 54189, 122472, 276777, 625482, 1413531, 3194478, 7219287, 16315020, 36870633, 83324700, 188307261, 425559582, 961731063, 2173436226, 4911794235, 11100267216, 25085727621
Offset: 0
Ashok K. Gupta and Ashok K. Mittal (akgjkiapt(AT)hotmail.com), Jan 20 2000
G.f.: = x + 2*x^2 + 3*x^3 + 6*x^4 + 15*x^5 + 36*x^6 + 81*x^7 + 180*x^8 + ...
- Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
- R. Schoof, Catalan's Conjecture, Springer-Verlag, 2008, pp. 17-18.
-
[n le 3 select n-1 else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..40]]; // G. C. Greubel, Apr 15 2021
-
A052102:= n-> add(2^j*binomial(n, 3*j+1), j=0..floor(n/3)); seq(A052102(n), n=0..40); # G. C. Greubel, Apr 15 2021
-
LinearRecurrence[{3,-3,3}, {0,1,2}, 32] (* Ray Chandler, Sep 23 2015 *)
-
{a(n) = polcoeff( lift( Mod(1 + x, x^3 - 2)^n ), 1)} /* Michael Somos, Aug 05 2009 */
-
{a(n) = sum(k=0, n\3, 2^k * binomial(n, 3*k + 1))} /* Michael Somos, Aug 05 2009 */
-
{a(n) = if( n<0, 0, polcoeff( (x - x^2) / (1 - 3*x + 3*x^2 - 3*x^3) + x * O(x^n), n))} /* Michael Somos, Aug 05 2009 */
-
[sum(2^j*binomial(n, 3*j+1) for j in (0..n//3)) for n in (0..40)] # G. C. Greubel, Apr 15 2021
A136297
a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3), with a(0)=1, a(1)=3, a(2)=1.
Original entry on oeis.org
1, 3, 1, -3, -3, 3, 9, 9, 9, 27, 81, 189, 405, 891, 2025, 4617, 10449, 23571, 53217, 120285, 271917, 614547, 1388745, 3138345, 7092441, 16028523, 36223281, 81861597, 185000517, 418086603, 944843049, 2135270889, 4825543329, 10905346467, 24645222081, 55696256829, 125869143645
Offset: 0
-
I:=[1,3,1]; [n le 3 select I[n] else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..41]]; // G. C. Greubel, Apr 12 2021
-
m:=40; S:=series( (1-5*x^2)/(1-3*x+3*x^2-3*x^3), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 12 2021
-
LinearRecurrence[{3,-3,3},{1,3,1},40] (* Harvey P. Dale, Jun 22 2013 *)
-
def A136297_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-5*x^2)/(1-3*x+3*x^2-3*x^3) ).list()
A136297_list(40) # G. C. Greubel, Apr 12 2021
A137256
Binomial transform of 2^n, 2^n, 2^n.
Original entry on oeis.org
1, 2, 4, 9, 21, 48, 108, 243, 549, 1242, 2808, 6345, 14337, 32400, 73224, 165483, 373977, 845154, 1909980, 4316409, 9754749, 22044960, 49819860, 112588947, 254442141, 575019162, 1299497904, 2936762649, 6636851721, 14998760928
Offset: 0
- Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
-
I:=[1,2,4]; [n le 3 select I[n] else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..30]]; // G. C. Greubel, Apr 10 2021
-
m:=30; S:=series( (1-x+x^2)/(1-3*x+3*x^2-3*x^3), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 10 2021
-
LinearRecurrence[{3, -3, 3},{1, 2, 4},30] (* Ray Chandler, Sep 23 2015 *)
-
def A137256_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x+x^2)/(1-3*x+3*x^2-3*x^3) ).list()
A137256_list(30) # G. C. Greubel, Apr 10 2021
A137247
a(n) = 4*a(n-1) - 6*a(n-2) + 6*a(n-3) - 3*a(n-4), with initial terms 0, 0, 0, 1.
Original entry on oeis.org
0, 0, 0, 1, 4, 10, 22, 49, 112, 256, 580, 1309, 2956, 6682, 15106, 34141, 77152, 174352, 394024, 890473, 2012404, 4547866, 10277806, 23227033, 52491280, 118626160, 268085740, 605852581, 1369179004, 3094236490, 6992730202, 15803018149
Offset: 0
-
I:=[0,0,0,1]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +6*Self(n-3) -3*Self(n-4): n in [1..41]]; // G. C. Greubel, Apr 15 2021
-
a[0]:=0: a[1]:=0: a[2]:=0: a[3]:=1: for n from 4 to 30 do a[n]:=4*a[n-1]-6*a[n-2]+6*a[n-3]-3*a[n-4] end do: seq(a[n],n=0..30); # Emeric Deutsch, Mar 17 2008
-
LinearRecurrence[{4,-6,6,-3}, {0,0,0,1}, 41] (* G. C. Greubel, Apr 15 2021 *)
-
def A137247_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^3/((1-x)*(1-3*x+3*x^2-3*x^3)) ).list()
A137247_list(40) # G. C. Greubel, Apr 15 2021
A140414
Triangle T(p,s) showing the coefficients of sequences which are half their p-th differences.
Original entry on oeis.org
3, 2, 1, 3, -3, 3, 4, -6, 4, 1, 5, -10, 10, -5, 3, 6, -15, 20, -15, 6, 1, 7, -21, 35, -35, 21, -7, 3, 8, -28, 56, -70, 56, -28, 8, 1, 9, -36, 84, -126, 126, -84, 36, -9, 3, 10, -45, 120, -210, 252, -210, 120, -45, 10, 1
Offset: 1
The triangle starts in row p=0 as:
3; (p=1, example A000244, a(n+1)=3*a(n) )
2, 1; (p=2 example A000244 or A000129, a(n+2) = 2*a(n+1)+a(n) )
3, -3, 3; (p=3 example A052103 or A136297, a(n+3) = 3*a(n+2)-3*a(n+1)+3*a(n) )
4, -6, 4, 1;
5,-10, 10, -5, 3;
6,-15, 20, -15, 6, 1;
7,-21, 35, -35, 21, -7, 3;
8,-28, 56, -70, 56, -28, 8, 1;
9,-36, 84,-126,126, -84, 36, -9, 3;
10,-45,120,-210,252,-210,120,-45,10,1;
A247584
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5) with a(0) = a(1) = a(2) = a(3) = a(4) = 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 13, 43, 113, 253, 509, 969, 1849, 3719, 8009, 18027, 40897, 91257, 198697, 423777, 894081, 1886011, 4007301, 8594411, 18560081, 40181493, 86872293, 187197193, 402060793, 861827743, 1846685729, 3960390059, 8504658049, 18283290609, 39325827729
Offset: 0
The following sequences belong to the same family:
A000129,
A001333,
A002532,
A002533,
A002605,
A015518,
A015519,
A026150,
A046717,
A052101,
A052102,
A052103,
A063727,
A083098,
A083099,
A083100,
A084057,
A093406,
A247344.
-
[n le 5 select 1 else 5*Self(n-1) -10*Self(n-2) +10*Self(n-3) -5*Self(n-4) +3*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jul 11 2015
-
m:=50; S:=series( (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 15 2021
-
LinearRecurrence[{5,-10,10,-5,3}, {1,1,1,1,1}, 50] (* Vincenzo Librandi, Jul 11 2015 *)
-
makelist(sum(2^k*binomial(n,5*k), k, 0, floor(n/5)), n, 0, 50); /* Alexander Samokrutov, Jul 11 2015 */
-
Vec((1-x)^4/(1-5*x+10*x^2-10*x^3+5*x^4-3*x^5) + O(x^100)) \\ Colin Barker, Sep 22 2014
-
[sum(2^j*binomial(n, 5*j) for j in (0..n//5)) for n in (0..50)] # G. C. Greubel, Apr 15 2021
Showing 1-8 of 8 results.
Comments