A140495 Union of A052103, A052102 and A052101, uniqued and sorted.
0, 1, 2, 3, 6, 9, 12, 15, 21, 27, 36, 45, 63, 81, 99, 144, 180, 225, 324, 405, 513, 729, 918, 1161, 1647, 2079, 2619, 3726, 4698, 5913, 8424, 10611, 13365, 19035, 23976, 30213, 43011, 54189, 68283, 97200, 122472, 154305, 219672, 276777, 348705, 496449, 625482
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,3).
Programs
-
Magma
I:=[6,9,12,15,21,27,36,45,63]; [0,1,2,3] cat [n le 9 select I[n] else 3*(Self(n-3) -Self(n-6) +Self(n-9)): n in [1..51]]; // G. C. Greubel, Apr 15 2021
-
Mathematica
LinearRecurrence[{0,0,3,0,0,-3,0,0,3}, {0,1,2,3,6,9,12,15,21,27,36,45,63}, 50] (* G. C. Greubel, Apr 15 2021 *)
-
Sage
[( x*(1+2*x+3*x^2+6*x^9+3*x^5+3*x^10+9*x^11+3*x^3+3*x^4)/(1-3*x^3+3*x^6-3*x^9) ).series(x,n+1).list()[n] for n in (0..50)] # G. C. Greubel, Apr 15 2021
Formula
G.f.: x*(1+2*x+3*x^2+6*x^9+3*x^5+3*x^10+9*x^11+3*x^3+3*x^4)/(1-3*x^3+3*x^6-3*x^9).
Extensions
Edited and extended by R. J. Mathar, Mar 02 2010
Comments