cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A126281 a(n) is the least m to satisfy the requirements of A052130.

Original entry on oeis.org

1, 2, 5, 8, 10, 13, 16, 18, 21, 24, 27, 29, 32, 35, 37, 40, 43, 46, 48, 51, 54, 56, 59, 62, 65, 67, 70, 73
Offset: 1

Views

Author

Robert G. Wilson v, Dec 24 2006

Keywords

Comments

A052130: For m very large, a(n) = number of numbers between 1 and 2^m with m-n prime factors (counted with multiplicity).
In observing the triangular array of A126279, the array T(k,n) defined as the k-th almost prime count of n-th power of two, it is noticed that the k-th term from the right converges to a fixed value beginning with the n-th power of two.
Will this sequence continue to match A117630: floor(n*log(3)/log(3/2)) ?

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; f[n_] := Block[{a = 0, m = n}, While[ b = AlmostPrimePi[m-n+1, 2^m]; b > a, m++; a = b]; m--; m]; Array[f, 24] (* Eric W. Weisstein, Feb 07 2006 *)

Extensions

a(25)-a(28) from Robert G. Wilson v, Sep 07 2012
Expression in comment corrected by L. Edson Jeffery, Apr 03 2015

A126279 Triangle read by rows: T(k,n) is number of numbers <= 2^n that are products of k primes.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 6, 6, 2, 1, 11, 10, 7, 2, 1, 18, 22, 13, 7, 2, 1, 31, 42, 30, 14, 7, 2, 1, 54, 82, 60, 34, 15, 7, 2, 1, 97, 157, 125, 71, 36, 15, 7, 2, 1, 172, 304, 256, 152, 77, 37, 15, 7, 2, 1, 309, 589, 513, 325, 168, 81, 37, 15, 7, 2, 1, 564, 1124, 1049, 669, 367, 177, 83, 37
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
  1
  2 1
  4 2 1
  6 6 2 1
  11 10 7 2 1
  18 22 13 7 2 1
  31 42 30 14 7 2 1
  54 82 60 34 15 7 2 1
  97 157 125 71 36 15 7 2 1
  172 304 256 152 77 37 15 7 2 1
		

References

  • Adolf Hildebrand, On the number of prime factors of an integer. Ramanujan revisited (Urbana-Champaign, Ill., 1987), 167 - 185, Academic Press, Boston, MA, 1988.
  • Edmund Georg Hermann Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 205 - 211.

Crossrefs

First column: A007053, second column: A125527, third column: A127396, 4th column: A334069. The last row reversed: A052130; the n-th row's sum: A000225 = 2^n -1.
Cf. A126280: same array but for powers of ten.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[ n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[ Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[m, 2^n], {n, 16}, {m, n}] // Flatten

A092097 Limit number of (m-n)-almost-primes in range [2^m..2^{m+1}-1].

Original entry on oeis.org

2, 5, 8, 22, 47, 103, 234, 493, 1087, 2282, 4901, 10427, 21993, 46389, 97394, 204567, 427099, 892587, 1858338, 3865692, 8027140, 16642918, 34463760, 71273199, 147235636, 303814862, 626313383, 1289883519, 2654196000
Offset: 0

Views

Author

Andrew S. Plewe, Feb 19 2004

Keywords

Comments

Also number of odd numbers k for which floor(log_2(k)) - bigomega(k) = n, where bigomega is A001222. - Franklin T. Adams-Watters, Jun 20 2006
The value of m at which the number of (m-n)-almost-primes reaches its limit is floor(n/(log_2(3)-1))+n-1: 1,4,7,9,12,15,17,20,23,26,28; not A026356: 2,4,7,9,12,15,17,20,22,25,28 as originally conjectured. - Franklin T. Adams-Watters, Jun 20 2006

Examples

			a(0) = 2: m-almost primes in [2^m..2^{m+1}-1] are 2^m and 3*2^{m-1}.
a(1) = 5; (m-1)-almost-primes in [2^m..2^{m-1}] are 5*2^{m-2}, 7*2^{m-2}, 9*2^{m-3}, 15*2^{m-3} and 27*2^{m-4}.
		

Crossrefs

Formula

For n>0, a(n) = A052130(n+1)-A052130(n).

Extensions

Edited and extended by Franklin T. Adams-Watters, Jun 20 2006

A373943 a(n) is the cardinality of the set containing all rational numbers of the form 2 <= m/2^(bigomega(m) - 1) <= n.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 6, 7, 7, 7, 10, 11, 13, 13, 13, 15, 18, 19, 21, 22, 22, 22, 24, 25, 27, 29, 30, 31, 34, 35, 36, 37, 38, 38, 40, 41, 43, 45, 47, 48, 49, 50, 54, 57, 57, 58, 61, 62, 63, 63, 63, 65, 66, 67, 67, 70, 71, 74, 75, 77, 79, 82, 82, 84, 86, 89, 91
Offset: 1

Views

Author

Friedjof Tellkamp, Jun 23 2024

Keywords

Examples

			a(10) = 7 = card{2, 3, 9/2, 5, 27/4, 7, 15/2}.
		

Crossrefs

Programs

  • Mathematica
    z = 100;
    k[n_] := Max[1, Floor[Log[3/2, n/2]]];
    m[n_] := n 2^(k[n] - 1);
    PrimePiK = Table[0, Floor[Log[2, m[z]]], m[z]];
    For[i = 2, i <= m[z], i++, PrimePiK[[PrimeOmega[i], i]] = 1]
    PrimePiK = Accumulate /@ PrimePiK;
    a = Table[PrimePiK[[k[n], m[n]]], {n, z}] (*sequence*)
    x = Union@Select[Table[i/2^(PrimeOmega[i] - 1), {i, 1, m[z], 2}], # <= z &] (*set*)
  • PARI
    nap(n, k) = sum(i=1, n, bigomega(i)==k);
    a(n) = my(k=max(1, floor(log(n/2)/(log(3)-log(2))))); nap(n*2^(k-1), k); \\ Michel Marcus, Jun 27 2024
    
  • Python
    from math import isqrt, prod
    from sympy import primepi, primerange, integer_nthroot
    def A373943(n):
        if n<=4: return primepi(n)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        k = 1
        while 3**k<(r:=n<Chai Wah Wu, Dec 03 2024

Formula

a(n) = card{x | x = m/2^(bigomega(m)-1), x<=n}.
a(n) = pi_k(n * 2^(k - 1)), with pi_k(n) as the counting function for k-almost primes and k sufficiently large.
k needs to be at least max(1, floor(log(n/2)/(log(3)-log(2)))) and m = n * 2^(k - 1).
a(n) = A374022(n) + A000720(n).
a(2^n) = A052130(n-1).

A096352 Triangle read by rows: each row represents all possible values for the size of the subset S{n - x} of {2^n...2^(n+1) - 1}, where S{n - x} represents all the members of that set with n - x factors.

Original entry on oeis.org

2, 4, 5, 2, 4, 6, 7, 8, 5, 12, 17, 20, 21, 22, 7, 20, 30, 37, 41, 44, 46, 47, 13, 40, 65, 81, 91, 96, 99, 101, 102, 103, 23, 75, 131, 173, 199, 215, 224, 229, 232, 233, 234, 43, 147, 257, 344, 403, 439, 461, 473, 482, 487, 490, 492, 493
Offset: 1

Views

Author

Andrew S. Plewe, Jun 29 2004

Keywords

Comments

The number of members in the n-th row appears to be equal to 2 + ( (n) * ((1 + sqrt(5))/2) ), or the n-th member of the lower Wythoff sequence (A000201) plus two. For the four rows show above, these values are 3, 5, 6, 8.
The first member of each row n is the number of primes in the set {2^n...2^(n + 1) - 1} (sequence A036378). The last member of each row follows sequence A092097, which is also equivalent to taking the difference of successive members of A052130 (the number of products of half-odd primes less than 2^n).

Examples

			Let x = 1. In set {2^2..2^(3) - 1}, or {4, 5, 6, 7}, S{n - 1} = S{2 - 1} = S{1} = subset of all numbers with one factor (the primes). The size of this subset is 2, or {5, 7}. For the set {2^3...2^(4) - 1}, the size of subset S{3 - 1} is 4. For {2^4..2^(5) - 1}, the size of subset S{4 - 1} is 5. For all subsequent sets, the size of subset S{n - 1} will be 5.
The triangle begins:
  2,4,5
  2,4,6,7,8
  5,12,17,20,21,22
  7,20,30,37,41,44,46,47
  ...
		

Crossrefs

A114791 Consider the array T where the element at T(r,c) is the number of n-almost primes less than or equal to 2^m. Sequence read by successive columns beginning at r=c.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 6, 6, 1, 2, 7, 10, 11, 1, 2, 7, 13, 22, 18, 1, 2, 7, 14, 30, 42, 31, 1, 2, 7, 15, 34, 60, 82, 54, 1, 2, 7, 15, 36, 71, 125, 157, 97, 1, 2, 7, 15, 37, 77, 152, 256, 304, 172, 1, 2, 7, 15, 37, 81, 168, 325, 513, 589, 309, 1, 2, 7, 15, 37, 83, 177, 367, 669, 1049
Offset: 1

Views

Author

Robert G. Wilson v, Feb 21 2006

Keywords

Comments

Eventually each column reads 1,2,7,15,37,84,187,421,914,... = A052130.

Examples

			1 2 4 6 11 18 31 54 97 172 309 564 1028 1900 3512 6542
..1 2 6 10 22 42 82 157 304 589 1124 2186 4192 8110 15658
....1 2 7 13 30 60 125 256 513 1049 2082 4214 8401 16771
......1 2 7 14 34 71 152 325 669 1405 2866 5931 12139
........1 2 7 15 36 77 168 367 770 1643 3410 7150
..........1 2 7 15 37 81 177 392 831 1790 3757
............1 2 7 15 37 83 182 406 867 1880
..............1 2 7 15 37 84 185 414 887
................1 2 7 15 37 84 186 418
		

Crossrefs

First row is A007053, Cf. A052130.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 2^k], {k, 12}, {n, k, 1, -1}] // Flatten

Formula

Each column sums to 2^n-1.

A197871 Irregular triangle T(n,k) of the number of numbers with k prime factors (repetitions allowed) less than n^2.

Original entry on oeis.org

0, 2, 1, 4, 3, 1, 6, 6, 2, 1, 9, 9, 4, 2, 11, 13, 7, 3, 1, 15, 17, 10, 4, 2, 18, 22, 13, 7, 2, 1, 22, 26, 19, 8, 4, 1, 25, 34, 22, 12, 4, 2, 30, 40, 28, 13, 7, 2, 34, 48, 32, 18, 7, 3, 1, 39, 56, 38, 21, 9, 4, 1, 44, 62, 48, 24, 11, 4, 2, 48, 75, 51, 29, 13, 6, 2
Offset: 1

Views

Author

Daniel Tisdale, Oct 18 2011

Keywords

Examples

			In the third row, reading from the left, 6 is the number of primes <= 16, 6 is the number of semiprimes <= 16, 2 is the number of numbers with three prime divisors (repetitions allowed) <= 16, and 1 is the number of numbers with four divisors <= 16.
The triangle begins:
   0
   2  1
   4  3  1
   6  6  2  1
   9  9  4  2
  11 13  7  3  1
  15 17 10  4  2
  ...
		

References

  • G. J. O. Jameson, The Prime Number Theorem, Cambridge, 2004, p.145.

Crossrefs

Similar to A052130.

Programs

  • Mathematica
    Join[{0}, Flatten[Table[Transpose[Tally[Table[Plus @@ Last /@ FactorInteger[i], {i, 2, n^2}]]][[2]], {n, 2, 15}]]]
  • PARI
    T(n,k) = #select(x->(bigomega(x) == k), [1..n^2]);
    row(n) = my(v = vector(n, k, T(n,k))); my(pos); for (k=1, n, if (v[k], pos=k)); Vec(v, pos); \\ Michel Marcus, Aug 16 2022
Showing 1-7 of 7 results.