cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A121431 Number of subpartitions of partition P=[0,0,1,1,1,2,2,2,2,3,3,3,3,3,4,...] (A052146).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 9, 15, 22, 30, 69, 118, 178, 250, 335, 769, 1317, 1995, 2820, 3810, 4984, 11346, 19311, 29126, 41061, 55410, 72492, 92652, 208914, 352636, 528097, 740035, 993678, 1294776, 1649634, 2065146, 4613976, 7722840, 11476963, 15971180
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2006

Keywords

Comments

See A115728 for the definition of subpartitions of a partition.

Examples

			The g.f. may be illustrated by:
1/(1-x) = (1 + 1*x)*(1-x)^0 + (x^2 + 2*x^3 + 3*x^4)*(1-x)^1 +
(4*x^5 + 9*x^6 + 15*x^7 + 22*x^8)*(1-x)^2 +
(30*x^9 + 69*x^10 + 118*x^11 + 178*x^12 + 250*x^13)*(1-x)^3 +
(335*x^14 + 769*x^15 + 1317*x^16 + 1995*x^17 + 2820*x^18 + 3810*x^19)*(1-x)^4 +...
When the sequence is put in the form of a triangle:
1, 1,
1, 2, 3,
4, 9, 15, 22,
30, 69, 118, 178, 250,
335, 769, 1317, 1995, 2820, 3810,
4984, 11346, 19311, 29126, 41061, 55410, 72492,
92652, 208914, 352636, 528097, 740035, 993678, 1294776, ...
then the columns of this triangle form column 1 (with offset)
of successive matrix powers of triangle H=A121412.
This sequence is embedded in table A121426 as follows.
Column 1 of successive powers of matrix H begin:
H^1: [1,1,4,30,335,4984,92652,2065146,53636520,...];
H^2: [1,2,9,69,769,11346,208914,4613976,118840164,...];
H^3: 1, [3,15,118,1317,19311,352636,7722840,197354133,...];
H^4: 1,4, [22,178,1995,29126,528097,11476963,291124693,...];
H^5: 1,5,30, [250,2820,41061,740035,15971180,402319275,...];
H^6: 1,6,39,335, [3810,55410,993678,21310710,533345745,...];
H^7: 1,7,49,434,4984, [72492,1294776,27611970,686872893,...];
H^8: 1,8,60,548,6362,92652, [1649634,35003430,865852191,...];
H^9: 1,9,72,678,7965,116262,2065146, [43626510,1073540871,...];
the terms enclosed in brackets form this sequence.
		

Crossrefs

Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); A121426, A121427; column 1 of H^n: A121414, A121418, A121422; variants: A121430, A121432, A121433.

Programs

  • PARI
    {a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+9)+1)\2 - 1 ) )); polcoeff(A, n))}

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^A052146(n).

A241719 Number T(n,k) of compositions of n into distinct parts with exactly k descents; triangle T(n,k), n>=0, 0<=k<=max(floor((sqrt(1+8*n)-3)/2),0), read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 4, 6, 1, 5, 7, 1, 6, 11, 2, 8, 16, 3, 10, 31, 15, 1, 12, 36, 16, 1, 15, 55, 29, 2, 18, 71, 41, 3, 22, 101, 65, 5, 27, 147, 144, 32, 1, 32, 188, 179, 35, 1, 38, 245, 269, 63, 2, 46, 327, 382, 93, 3, 54, 421, 549, 148, 5, 64, 540, 739, 205, 7
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2014

Keywords

Examples

			T(6,0) = 4: [6], [2,4], [1,5], [1,2,3].
T(6,1) = 6: [5,1], [4,2], [3,1,2], [1,3,2], [2,1,3], [2,3,1].
T(6,2) = 1: [3,2,1].
T(7,0) = 5: [7], [3,4], [2,5], [1,6], [1,2,4].
T(7,1) = 7: [6,1], [4,3], [5,2], [2,1,4], [1,4,2], [2,4,1], [4,1,2].
T(7,2) = 1: [4,2,1].
Triangle T(n,k) begins:
00:   1;
01:   1;
02:   1;
03:   2,   1;
04:   2,   1;
05:   3,   2;
06:   4,   6,   1;
07:   5,   7,   1;
08:   6,  11,   2;
09:   8,  16,   3;
10:  10,  31,  15,  1;
11:  12,  36,  16,  1;
12:  15,  55,  29,  2;
13:  18,  71,  41,  3;
14:  22, 101,  65,  5;
15:  27, 147, 144, 32, 1;
		

Crossrefs

Row sums give A032020.
T(A000217(k+1)-1,k-1) = A000041(k) for k>0.
Cf. A052146.

Programs

  • Maple
    g:= proc(u, o) option remember; `if`(u+o=0, 1, expand(
          add(g(u+j-1, o-j)  , j=1..o)+
          add(g(u-j, o+j-1)*x, j=1..u)))
        end:
    b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
          `if`(n>m, 0, `if`(n=m, x^i,
          expand(b(n, i-1) +`if`(i>n, 0, x*b(n-i, i-1)))))
        end:
    T:= n-> (p-> (q-> seq(coeff(q, x, i), i=0..degree(q)))(add(
             coeff(p, x, k)*g(0, k), k=0..degree(p))))(b(n$2)):
    seq(T(n), n=0..20);
  • Mathematica
    g[u_, o_] := g[u, o] = If[u+o == 0, 1, Expand[Sum[g[u+j-1, o-j], {j, 1, o}] + Sum[g[u-j, o+j-1]*x, {j, 1, u}]]]; b[n_, i_] := b[n, i] = Module[{m}, m = i*(i+1)/2; If[n>m, 0, If[n == m, x^i, Expand[b[n, i-1] + If[i>n, 0, x*b[n-i, i-1]]]]]]; T[n_] := Function [p, Function[q, Table[Coefficient[q, x, i], {i, 0, Exponent[q, x]}]][Sum[Coefficient[p, x, k]*g[0, k], {k, 0, Exponent[p, x]}]]][b[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Apr 28 2014, after Alois P. Heinz *)

A238406 Number T(n,k) of partitions of n into k parts such that every i-th smallest part (counted with multiplicity) is different from i; triangle T(n,k), n>=0, 0<=k<=floor((sqrt(9+8*n)-3)/2) read by rows.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 1, 3, 1, 0, 1, 4, 3, 0, 1, 4, 4, 0, 1, 5, 6, 0, 1, 5, 7, 0, 1, 6, 9, 1, 0, 1, 6, 11, 4, 0, 1, 7, 13, 7, 0, 1, 7, 15, 11, 0, 1, 8, 18, 15, 0, 1, 8, 20, 19, 0, 1, 9, 23, 25, 1, 0, 1, 9, 26, 30, 5
Offset: 0

Views

Author

Alois P. Heinz, Feb 26 2014

Keywords

Examples

			T(10,1) = 1: [10].
T(10,2) = 4: [5,5], [4,6], [3,7], [2,8].
T(10,3) = 3: [3,3,4], [2,4,4], [2,3,5].
Triangle T(n,k) begins:
  1;
  0;
  0, 1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2;
  0, 1, 3;
  0, 1, 3, 1;
  0, 1, 4, 3;
  0, 1, 4, 4;
  0, 1, 5, 6;
  0, 1, 5, 7;
  0, 1, 6, 9, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000012 (for n>1), A004526(n-2) (for n>4), A244239, A244240, A244241, A244242, A244243, A244244, A244245, A244246.
Row sums give A238394.
Cf. A052146.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, (p-> expand(
           x*(p-coeff(p, x, i-1)*x^(i-1))))(b(n-i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b(n$2)):
    seq(T(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, Expand[x*(p - Coefficient[p, x, i-1]*x^(i-1))]][b[n-i, i]]]] ]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Max[0, Exponent[p, x]]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)

A113402 Algebraic degree of cos(Pi/n) for constructible n-gons (A003401).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512
Offset: 1

Views

Author

Eric W. Weisstein, Oct 28 2005

Keywords

Comments

a(n) is always a power of 2.
It would appear that a(n) <= a(n+1) and that for a(n)=2^k, the count for k beginning with 0 is 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, ...; or that the count for k is k+2 for k > 0. - Robert G. Wilson v, Jul 31 2014
Apparently v_2(a(n)) = A052146(n-1) for n >= 2 where v_2 is the 2-adic valuation. - Joerg Arndt, Jul 29 2014 [incorrect for n >= 561, Joerg Arndt, Mar 03 2019]

Crossrefs

Programs

  • Mathematica
    f[n_] := Exponent[MinimalPolynomial[Cos[Pi/n]][x], x]; Table[ f@ n, {n, Select[ Range@ 1300, IntegerQ[ Log[2, EulerPhi[#]]] &]}] (* Robert G. Wilson v, Jul 28 2014 *)
    A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 2500; t = Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}]; f[n_] := EulerPhi[ 2n]/2; f[1] = 1; f@# & /@ t (* Robert G. Wilson v, Jul 28 2014 *)

A385379 The maximum possible number of distinct composite prime powers (A246547) in the factorization of n into prime powers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jun 27 2025

Keywords

Comments

Differs from A376679 at n = 1, 48, 72, 80, ... .
The factorization includes primes if n is not a powerful number (A001694) that is larger than 1.
a(n) depends only on the prime signature of n (A118914).

Examples

			         n | a(n) | factorization
  ---------+------+----------------------------------------
         4 |  1   | 2^2
        32 |  2   | 2^2 * 2^3
       288 |  3   | 2^2 * 2^3 * 3^2
      4608 |  4   | 2^2 * 2^3 * 3^2 * 2^4
    115200 |  5   | 2^2 * 2^3 * 3^2 * 2^4 * 5^2
   3110400 |  6   | 2^2 * 2^3 * 3^2 * 2^4 * 5^2 * 3^3
  99532800 |  7   | 2^2 * 2^3 * 3^2 * 2^4 * 5^2 * 3^3 * 2^5
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[(Sqrt[8*e + 9] - 3)/2]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> (sqrtint(8*x+9)-1)\2 , factor(n)[, 2]));

Formula

Additive with a(p^e) = A052146(e+1).
a(n) = 0 if and only if n is squarefree (A005117).
a(A385380(n)) = n-1.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{k>=1} P(k*(k+3)/2) = 0.49006911093767425812..., and P is the prime zeta function.

A345236 Triangle read by rows: The rightmost column contains the terms of A002262 starting at A002262(1). Each time a column's value is zero (except for a(0)), the column to its left starts at the next term in A002262, or if that column does not yet exist, it starts at A002262(2).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 3, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 2, 0, 1, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 4, 1, 2, 5, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 3, 1, 0, 0, 4, 1, 0, 0, 5, 1, 0, 0, 6, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 3
Offset: 0

Views

Author

John-Vincent Saddic, Jul 14 2021

Keywords

Comments

The first row with k columns is the A006893(k)-th. The last row with k columns comprises the first k terms of A006893.

Examples

			Triangle begins as:
  0
  1
  1 0
  1 1
  1 2
  1 0 0
  1 0 1
  1 0 2
  1 0 3
  1 1 0
		

Crossrefs

First row with n values: A006893(n).

Programs

  • Java
    See Links. Rows are printed with values concatenated. Values greater than 10 are represented between parentheses, e.g., row 100 is 113(10).

Formula

To calculate the values of the n-th row:
c(m) = floor((sqrt(9 + 8*m) - 3)/2) = A052146(m+1).
r(m) = m - (c(m)^2)/2 - 3*c(m)/2 = A002262(m+1).
The last value of row m is r(m), the second to last value is r(c(m)), the third to last value is r(c(c(m))), and so on until c(m) equals 0.
Showing 1-6 of 6 results.