cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052149 Number of nonsquare rectangles on an n X n board.

Original entry on oeis.org

0, 4, 22, 70, 170, 350, 644, 1092, 1740, 2640, 3850, 5434, 7462, 10010, 13160, 17000, 21624, 27132, 33630, 41230, 50050, 60214, 71852, 85100, 100100, 117000, 135954, 157122, 180670, 206770, 235600, 267344, 302192, 340340, 381990, 427350, 476634
Offset: 1

Views

Author

Ronald Arms (ron.arms(AT)stanfordalumni.org), Jan 23 2000

Keywords

Comments

Partial sums of A045991 (n^3-n^2). - Jeremy Gardiner, Jun 30 2013

Examples

			a(10) = 10 * 9 * 11 * 32 / 12 = 2640.
a(5) = 170 and the sum from 1 to 5 is 15, giving 1*(15-1)=14, 2*(15-2)=26, 2*(15-3)=36, 4*(15-4)=44 and 5*(15-5)=50; adding 14+26+36+44+50=170. Do the same for each n and get a(n). - _J. M. Bergot_, Oct 31 2014
		

Crossrefs

Programs

  • Magma
    I:=[0, 4, 22, 70, 170]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..45]]; // Vincenzo Librandi, Apr 28 2012
    
  • Maple
    a:=n->sum(j^3-j^2, j=0..n): seq(a(n), n=1..37); # Zerinvary Lajos, May 08 2008
  • Mathematica
    CoefficientList[Series[2*x*(2+x)/(1-5*x+10*x^2-10*x^3+ 5*x^4-x^5), {x,0,50}], x] (* Vincenzo Librandi, Apr 28 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,4,22,70,170},40] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    a(n) = sum(k=1,n,(k-1)*k^2) \\ Michel Marcus, Nov 09 2012

Formula

a(n) = n*(n-1)*(n+1)*(3*n+2)/12.
G.f.: 2*x^2*(2+x)/(1-5*x+10*x^2-10*x^3+5*x^4-x^5). - Colin Barker, Jan 04 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Apr 28 2012
a(n) = A033487(n-1) - A007290(n+1) starting at n=1. - J. M. Bergot, Jun 04 2012
a(n) = Sum_{k=1..n} (k-1)*k^2. - Michel Marcus, Nov 09 2012
a(n) = A000537(n) - A000330(n) = 2*A000914(n-1). - Luciano Ancora, Mar 16 2015
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=2} 1/a(n) = 81*log(3)/5 - 9*sqrt(3)*Pi/5 - 192/25.
Sum_{n>=2} (-1)^n/a(n) = 18*sqrt(3)*Pi/5 - 48*log(2)/5 - 318/25. (End)