A007290
a(n) = 2*binomial(n,3).
Original entry on oeis.org
0, 0, 0, 2, 8, 20, 40, 70, 112, 168, 240, 330, 440, 572, 728, 910, 1120, 1360, 1632, 1938, 2280, 2660, 3080, 3542, 4048, 4600, 5200, 5850, 6552, 7308, 8120, 8990, 9920, 10912, 11968, 13090, 14280, 15540, 16872, 18278, 19760, 21320, 22960, 24682, 26488, 28380, 30360, 32430, 34592, 36848, 39200
Offset: 0
- Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906, p. 352.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
- Maurice Protat, Des Olympiades à l'Agrégation, un problème de maximum, Problème 36, p. 83, Ellipses, Paris 1997.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Alexandru T. Balaban, Denise Mills, Ovidiu Ivanciuc and Subhash C. Basak,, Reverse Wiener indices, Croatica Chemica Acta, Vol. 73, No. 4 (2000), pp. 923-941.
- A. Burstein, S. Kitaev and T. Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19, No. 2-3 (2008), pp. 27-38.
- Otto Haxel, J. Hans D. Jensen and Hans E. Suess, On the "Magic Numbers" in Nuclear Structure, Phys. Rev., Vol. 75 (1949), p. 1766.
- Xiangdong Ji, Chapter 8: Structure of Finite Nuclei, Lecture notes for Phys 741 at Univ. of Maryland, p. 140 [From _Tom Copeland_, Apr 07 2014].
- Sandi Klavžar, Balázs Patkós, Gregor Rus and Ismael G. Yero, On general position sets in Cartesian grids, arXiv:1907.04535 [math.CO], 2019.
- Vladimir Ladma, Magic Numbers.
- Cleve Moler, LINPACK subroutine sgefa.f, University of New Mexico, Argonne National Lab, 1978.
- Hamzeh Mujahed and Benedek Nagy, Wiener Index on Lines of Unit Cells of the Body-Centered Cubic Grid, Mathematical Morphology and Its Applications to Signal and Image Processing, 12th International Symposium, ISMM 2015.
- V. B. Priezzhev, Series expansion for rectilinear polymers on the square lattice, J. Phys. A, Vol. 12, No. 11 (1979), pp. 2131-2139.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Wikipedia, p-derivation.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a007290 n = if n < 3 then 0 else 2 * a007318 n 3 -- Reinhard Zumkeller, Nov 18 2012
-
I:=[0, 0, 0, 2]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 19 2012
-
A007290 := proc(n) 2*binomial(n,3) end proc:
-
Table[Integrate[ D[ChebyshevU[n, x], x] D[ChebyshevU[n, x], x] (1 - x^2)^(1/2), {x, -1, 1}]/Pi, {n, 1, 20}] (* Pacher *)
LinearRecurrence[{4,-6,4,-1},{0,0,0,2},50] (* Vincenzo Librandi, Jun 19 2012 *)
-
my(x='x+O('x^100)); concat([0, 0, 0], Vec(2*x^3/(1-x)^4)) \\ Altug Alkan, Nov 01 2015
-
apply( {A007290(n)=binomial(n,3)*2}, [0..55]) \\ M. F. Hasler, Jul 02 2021
A000914
Stirling numbers of the first kind: s(n+2, n).
Original entry on oeis.org
0, 2, 11, 35, 85, 175, 322, 546, 870, 1320, 1925, 2717, 3731, 5005, 6580, 8500, 10812, 13566, 16815, 20615, 25025, 30107, 35926, 42550, 50050, 58500, 67977, 78561, 90335, 103385, 117800, 133672, 151096, 170170, 190995, 213675, 238317, 265031
Offset: 0
Examples include E(K_1,2,3) = s(2+2,2) = 11 and E(K_1,2,3,4,5) = s(4+2,4) = 85, where E is the function that counts edges of graphs.
For n=2 the a(2)=11 functions f:[4]->[4] with exactly two f(x)=x and two f(x)>x are given by the 11 image vectors of form <f(1),f(2),f(3),f(4)> that follow: <1,3,4,4>, <1,4,4,4>, <2,2,4,4>, <3,2,4,4>, <4,2,4,4>, <2,3,3,4>, <2,4,3,4>, <3,3,3,4>, <3,4,3,4>, <4,3,3,4>, and <4,4,3,4>. - _Dennis P. Walsh_, Sep 06 2017
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
- George E. Andrews, Number Theory, Dover Publications, New York, 1971, p. 4.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
- H. S. Hall and S. R. Knight, Higher Algebra, Fourth Edition, Macmillan, 1891, p. 518.
- Zhu Shijie, Jade Mirror of the Four Unknowns (Siyuan yujian), Book III Guo Duo Die Gang (Piles of Fruit), Problem number 1, 1303.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., Vol. 1, No. 3 (1926), pp. 44-49. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Zhu Shijie, Jade Mirror of the Four Unknowns 2, Translation by Library of Chinese classics, original from 1303.
- Wikipedia, Jade Mirror of the Four Unknowns.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf. similar sequences listed in
A241765.
Cf.
A006325(n+1) (Zhu Shijie's problem number 2 uses a pyramid with square base).
-
a000914 n = a000914_list !! n
a000914_list = scanl1 (+) a006002_list
-- Reinhard Zumkeller, Mar 25 2014
-
[StirlingFirst(n+2, n): n in [0..40]]; // Vincenzo Librandi, May 28 2019
-
A000914 := n -> 1/24*(n+1)*n*(n+2)*(3*n+5);
A000914 := proc(n)
combinat[stirling1](n+2,n) ;
end proc: # R. J. Mathar, May 19 2016
-
Table[StirlingS1[n+2,n],{n,0,40}] (* Harvey P. Dale, Aug 24 2011 *)
a[ n_] := n (n + 1) (n + 2) (3 n + 5) / 24; (* Michael Somos, Sep 04 2017 *)
-
a(n)=sum(i=1,n+1,sum(j=1,n+1,i*j*(i
-
a(n)=sum(i=1,n+1,sum(j=1,i-1,i*j)) \\ Charles R Greathouse IV, Apr 07 2015
-
a(n) = binomial(n+2, 3)*(3*n+5)/4 \\ Charles R Greathouse IV, Apr 07 2015
-
[stirling_number1(n+2, n) for n in range(41)] # Zerinvary Lajos, Mar 14 2009
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 17 2000
Erroneous duplicate of the polynomial formula removed by
R. J. Mathar, Sep 15 2009
A153978
a(n) = n*(n-1)*(n+1)*(3*n-2)/12.
Original entry on oeis.org
0, 2, 14, 50, 130, 280, 532, 924, 1500, 2310, 3410, 4862, 6734, 9100, 12040, 15640, 19992, 25194, 31350, 38570, 46970, 56672, 67804, 80500, 94900, 111150, 129402, 149814, 172550, 197780, 225680, 256432, 290224, 327250, 367710, 411810, 459762
Offset: 1
Cf.
A003215,
A000537,
A000578,
A005898,
A027602,
A006007,
A153976,
A153977,
A011379,
A052149,
A213819.
-
With[{r=Range[0,50]},Accumulate[r^2+r^3]] (* Harvey P. Dale, Jan 16 2011 *)
Rest[CoefficientList[Series[-2 x^2 * (2 x + 1)/(x - 1)^5, {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 30 2014 *)
LinearRecurrence[{5,-10,10,-5,1}, {0,2,14,50,130}, 25] (* G. C. Greubel, Sep 01 2016 *)
-
concat(0, Vec(-2*x^2*(2*x+1)/(x-1)^5 + O(x^100))) \\ Colin Barker, Jun 28 2014
-
a(n) = n*(n-1)*(n+1)*(3*n-2)/12 \\ Charles R Greathouse IV, Sep 01 2016
A173020
Triangle of Generalized Runyon numbers R_{n,k}^(3) read by rows.
Original entry on oeis.org
1, 1, 3, 1, 9, 12, 1, 18, 66, 55, 1, 30, 210, 455, 273, 1, 45, 510, 2040, 3060, 1428, 1, 63, 1050, 6650, 17955, 20349, 7752, 1, 84, 1932, 17710, 74382, 148764, 134596, 43263, 1, 108, 3276, 40950, 245700, 753480, 1184040, 888030, 246675, 1, 135, 5220, 85260, 690606, 2992626, 7125300, 9161100, 5852925, 1430715
Offset: 1
The triangle starts in row n=1 as
1;
1, 3;
1, 9, 12;
1, 18, 66, 55;
1, 30, 210, 455, 273;
1, 45, 510, 2040, 3060, 1428;
1, 63, 1050, 6650, 17955, 20349, 7752;
1, 84, 1932, 17710, 74382, 148764, 134596, 43263;
- Chunwei Song, The Generalized Schroeder Theory, El. J. Combin. 12 (2005) #R53
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020. See Fig. 6.
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 20.
-
A173020:= func< n,k,m | Binomial(n,k)*Binomial(m*n,k-1)/n >;
[A173020(n,k,3): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 20 2021
-
T[n_, k_, m_]:= Binomial[n, k]*Binomial[m*n, k-1]/n;
Table[T[n, k, 3], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
-
def A173020(n,k,m): return binomial(n,k)*binomial(m*n,k-1)/n
flatten([[A173020(n,k,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 20 2021
Original entry on oeis.org
2, 6, 24, 72, 172, 352, 646, 1094, 1742, 2642, 3852, 5436, 7464, 10012, 13162, 17002, 21626, 27134, 33632, 41232, 50052, 60216, 71854, 85102, 100102, 117002, 135956, 157124, 180672, 206772, 235602, 267346, 302194, 340342, 381992, 427352, 476636
Offset: 2
- Colin Barker, Table of n, a(n) for n = 2..1000
- Alvaro Carbonero, Beth Anne Castellano, Gary Gordon, Charles Kulick, Karie Schmitz, and Brittany Shelton, Permutations of point sets in R_d, arXiv:2106.14140 [math.CO], 2021.
- T. M. Cover, The number of linearly inducible orderings of points in d-space, SIAM J. Applied Math., 15 (1967), 434-439.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
CoefficientList[Series[-2 x^2*(x^4 - 4 x^3 + 7 x^2 - 2 x + 1)/(x - 1)^5, {x, 0, 38}], x][[3 ;; -1]] (* Michael De Vlieger, Oct 19 2021 *)
-
Vec(-2*x^2*(x^4-4*x^3+7*x^2-2*x+1)/(x-1)^5 + O(x^100)) \\ Colin Barker, Dec 06 2014
A035291
Number of ways to place a non-attacking white and black queen on n X n chessboard.
Original entry on oeis.org
0, 0, 16, 88, 280, 680, 1400, 2576, 4368, 6960, 10560, 15400, 21736, 29848, 40040, 52640, 68000, 86496, 108528, 134520, 164920, 200200, 240856, 287408, 340400, 400400, 468000, 543816, 628488, 722680, 827080, 942400, 1069376, 1208768
Offset: 1
There are 16 ways of putting distinct queens on 3 X 3 so that neither can capture the other.
-
[(3*n^4-10*n^3+9*n^2-2*n)/3: n in [1..40]]; // Vincenzo Librandi, Apr 22 2012
-
I:=[0, 0, 16, 88,280]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 22 2012
-
CoefficientList[Series[8*x^3*(2+x)/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, Apr 22 2012 *)
A071910
a(n) = t(n)*t(n+1)*t(n+2), where t() are the triangular numbers.
Original entry on oeis.org
0, 18, 180, 900, 3150, 8820, 21168, 45360, 89100, 163350, 283140, 468468, 745290, 1146600, 1713600, 2496960, 3558168, 4970970, 6822900, 9216900, 12273030, 16130268, 20948400, 26910000, 34222500, 43120350, 53867268, 66758580, 82123650, 100328400, 121777920
Offset: 0
Cf.
A006542, (first differences of a(n) /18)
A006414, (second differences of a(n) /18)
A006322, (third differences of a(n) /18)
A004068, (fourth differences of a(n) /18)
A005891, (fifth differences of a(n) /18)
A008706.
-
Join[{0},Times@@@Partition[Accumulate[Range[40]],3,1]] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,18,180,900,3150,8820,21168},40] (* Harvey P. Dale, Aug 08 2025 *)
-
t(n) = n*(n+1)/2;
a(n) = t(n)*t(n+1)*t(n+2); \\ Michel Marcus, Oct 21 2015
Showing 1-7 of 7 results.
Comments