cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052213 Numbers k with prime signature(k) = prime signature(k+1).

Original entry on oeis.org

2, 14, 21, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 429, 434, 445, 446, 453, 481
Offset: 1

Views

Author

Erich Friedman, Jan 29 2000

Keywords

Comments

This sequence is infinite, see A189982 and Theorem 4 in Goldston-Graham-Pintz-Yıldırım. - Charles R Greathouse IV, Jul 17 2015
This is a subsequence of A005237, hence a(n) >> n sqrt(log log n) by the Erdős-Pomerance-Sárközy result cited there. - Charles R Greathouse IV, Jul 17 2015
Sequence is not the same as A280074, first deviation is at a(212): a(212) = 2041, A280074(212) = 2024. Number 2024 is the smallest number n such that A007425(n) = A007425(n+1) with different prime signatures of numbers n and n+1 (2024 = 2^3 * 11 * 23, 2025 = 3^4 * 5^2; A007425(2024) = A007425(2025) = 90). Conjecture: also numbers n such that Product_{d|n} tau(d) = Product_{d|n+1} tau(d). - Jaroslav Krizek, Dec 25 2016

Examples

			14 = 2^1*7^1 and 15 = 3^1*5^1, so both have prime signature {1,1}. Thus, 14 is a term.
		

Crossrefs

Programs

  • Mathematica
    pri[n_] := Sort[ Transpose[ FactorInteger[n]] [[2]]]; Select[ Range[ 2, 1000], pri[#] == pri[#+1] &]
    Rest[SequencePosition[Table[Sort[FactorInteger[n][[All,2]]],{n,500}],{x_,x_}][[All,1]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 28 2017 *)
  • PARI
    lista(nn) = for (n=1, nn-1, if (vecsort(factor(n)[,2]) == vecsort(factor(n+1)[,2]), print1(n, ", "));); \\ Michel Marcus, Jun 10 2015
    
  • Python
    from sympy import factorint
    def aupto(limit):
        alst, prevsig = [], [1]
        for k in range(3, limit+2):
            sig = sorted(factorint(k).values())
            if sig == prevsig: alst.append(k - 1)
            prevsig = sig
        return alst
    print(aupto(250)) # Michael S. Branicky, Sep 20 2021