A052213 Numbers k with prime signature(k) = prime signature(k+1).
2, 14, 21, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 429, 434, 445, 446, 453, 481
Offset: 1
Examples
14 = 2^1*7^1 and 15 = 3^1*5^1, so both have prime signature {1,1}. Thus, 14 is a term.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- D. A. Goldston, S. W. Graham, J. Pintz, and C. Y. Yıldırım, Small gaps between almost primes, the parity problem, and some conjectures of Erdos on consecutive integers, arXiv:0803.2636 [math.NT], 2008.
- MathOverflow, Question on consecutive integers with similar prime factorizations
- Eric Weisstein's MathWorld, Prime Signature
- Wikipedia, Prime signature
Programs
-
Mathematica
pri[n_] := Sort[ Transpose[ FactorInteger[n]] [[2]]]; Select[ Range[ 2, 1000], pri[#] == pri[#+1] &] Rest[SequencePosition[Table[Sort[FactorInteger[n][[All,2]]],{n,500}],{x_,x_}][[All,1]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 28 2017 *)
-
PARI
lista(nn) = for (n=1, nn-1, if (vecsort(factor(n)[,2]) == vecsort(factor(n+1)[,2]), print1(n, ", "));); \\ Michel Marcus, Jun 10 2015
-
Python
from sympy import factorint def aupto(limit): alst, prevsig = [], [1] for k in range(3, limit+2): sig = sorted(factorint(k).values()) if sig == prevsig: alst.append(k - 1) prevsig = sig return alst print(aupto(250)) # Michael S. Branicky, Sep 20 2021
Comments