cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A034173 a(n) is minimal such that prime factorizations of a(n), ..., a(n)+n-1 have same exponents.

Original entry on oeis.org

1, 2, 33, 19940, 204323, 380480345, 440738966073
Offset: 1

Views

Author

Dean Hickerson, Oct 01 1998

Keywords

Comments

a(8) > 10^13. - Donovan Johnson, Oct 20 2009
Don Reble has shown that a(8) < 1.9*10^42, cf. link.
From David Wasserman, Jan 05 2019: (Start)
a(8) <= 108111092880293127811946663766147737122,
a(9) <= 6850672946809600696044301071559918192380244,
a(10) <= 96037988156124494415303285590850571857698741869620,
a(11) <= 9044737840075556371215937303485030235666252755947862558252154847122. (End)

Examples

			a(4) = 19940 because 19940, ..., 19943 all have the form p^2 q r.
		

Crossrefs

Cf. A034174.
Cf. A052213, A052214, A175590, A218448. This sequence is the first column of A083785 and first row of A113456. The latter generalizes to arithmetic progressions with step d>=1. - M. F. Hasler, Oct 28 2012

Programs

  • PARI
    A034173(n)={my(f);for(k=1,oo,f=0;for(i=1,n, f==(f=vecsort(factor(k+n-i)[,2])) || i==1 || [k+=n-i; next(2)]);return(k))} \\ M. F. Hasler, Oct 23 2012

Formula

a(n) = A034174(n) - n + 1. - Max Alekseyev, Nov 10 2009
a(n) = A083785(n,1) = A113456(1,n); a(2) = A052213(1), a(3) = A052214(1), a(4) = A175590(1), a(5) = A218448(1), a(6) = A218448(62) = A218448(63)-1. - M. F. Hasler, Oct 28 2012

Extensions

a(7) from Donovan Johnson, Oct 20 2009
Don Reble link repaired by N. J. A. Sloane, Oct 24 2024

A175590 Numbers k with prime signature(k) = prime signature(k+1) = prime signature(k+2) = prime signature(k+3).

Original entry on oeis.org

19940, 49147, 54585, 118923, 136825, 183554, 204323, 204324, 262932, 304675, 361275, 361322, 476377, 486962, 506905, 619722, 668211, 734948, 854018, 937025, 938203, 999649, 1062025, 1118275, 1335572, 1336075, 1356324, 1466225, 1541491
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 2^2 * 5 * 997; a(1)+1 = 3 * 17^2 * 23; a(1)+2 = 2 * 13^2 * 59; a(1)+3 = 7^2 * 11 * 37. All have prime signature {2, 1, 1}.
		

Crossrefs

Cf. A052213, A052214, A218448. Subsequence of A070284.

Programs

  • Mathematica
    SequencePosition[Table[Sort[FactorInteger[n][[All,2]]],{n,1542000}],{x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* The program will take a long time to run. *) (* Harvey P. Dale, Jun 09 2021 *)
  • PARI
    sig(n)={vecsort(factor(n)[,2])}; s=sig(1);for(n=1,1e6,t=sig(n+1);if(s==t&t==sig(n+2)&t==sig(n+3),print1(n-1,","));s=t)
    
  • PARI
    is_A175590(n)={my(f(n)=vecsort(factor(n)[,2]),t=f(n));!for(i=1,3,f(n+i)!=t & return)}  \\ M. F. Hasler, Nov 01 2012

A218448 First of a run of 5 consecutive numbers with same prime signature.

Original entry on oeis.org

204323, 3252571, 5205074, 7201674, 20182921, 28387953, 36193650, 43216722, 51049537, 56155074, 57070850, 61961315, 62167075, 65425473, 76647074, 82507473, 92658049, 95943321, 100498849, 107236449, 109751473, 110899321, 112198075, 112477849, 116736323
Offset: 1

Views

Author

M. F. Hasler, Oct 28 2012

Keywords

Comments

A number n is in this sequence iff n and n+1 is in A175590; also: iff n and n+2 are in A052214 (in which case n+1 is in A052214, too); and also: iff {n,n+1,n+2,n+3} are in A052213.
A034173(6) = A218448(62) = A218448(63)-1 is the least term n such that n+1 is also in the sequence.

Crossrefs

Programs

  • PARI
    is_A218448(n)={my(f);!for(i=0,4,f!=(f=vecsort(factor(n+i)[,2])) & i & return)}
    
  • PARI
    f(k)=vecsort(factor(k)[,2]~,,4)
    t=f(n=2);while(n<1e8, for(i=n+1, n+4, tt=f(i); if(tt!=t, n=i; t=tt; next(2))); print1(n", "); n++) \\ Charles R Greathouse IV, Oct 28 2012

Extensions

a(6)-a(8) from Charles R Greathouse IV, Oct 28 2012
a(9)-a(25) from Donovan Johnson, Oct 28 2012
Values up to a(140) computed using b175590.txt from Charles R Greathouse IV - M. F. Hasler, Oct 28 2012

A358817 Numbers k such that A046660(k) = A046660(k+1).

Original entry on oeis.org

1, 2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 44, 46, 49, 57, 58, 61, 65, 66, 69, 70, 73, 75, 77, 78, 80, 82, 85, 86, 93, 94, 98, 101, 102, 105, 106, 109, 110, 113, 114, 116, 118, 122, 129, 130, 133, 135, 137, 138, 141, 142, 145, 147, 154, 157
Offset: 1

Views

Author

Amiram Eldar, Dec 02 2022

Keywords

Comments

First differs from its subsequence A007674 at n=18.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 5, 38, 369, 3655, 36477, 364482, 3644923, 36449447, 364494215, 3644931537, ... . Apparently, the asymptotic density of this sequence exists and equals 0.36449... .

Crossrefs

Cf. A046660.
Subsequences: A007674, A052213, A085651, A358818.
Similar sequences: A002961, A005237, A006049, A045920.

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, e1 = 0, e2}, Do[e2 = PrimeOmega[k] - PrimeNu[k]; If[e1 == e2, AppendTo[s, k - 1]]; e1 = e2, {k, 2, kmax}]; s]; seq[160]
  • PARI
    e(n) = {my(f = factor(n)); bigomega(f) - omega(f)};
    lista(nmax) = {my(e1 = e(1), e2); for(n=2, nmax, e2=e(n); if(e1 == e2, print1(n-1,", ")); e1 = e2);}

A260143 Runs of consecutive integers with same prime signature.

Original entry on oeis.org

2, 3, 14, 15, 21, 22, 33, 34, 35, 38, 39, 44, 45, 57, 58, 75, 76, 85, 86, 87, 93, 94, 95, 98, 99, 116, 117, 118, 119, 122, 123, 133, 134, 135, 136, 141, 142, 143, 145, 146, 147, 148, 158, 159, 171, 172, 177, 178, 201, 202, 203, 205, 206, 213, 214, 215, 217, 218, 219, 230, 231, 244, 245
Offset: 1

Views

Author

Jean-François Alcover, Jul 17 2015

Keywords

Comments

This sequence is infinite, see A189982 and Theorem 4 in Goldston-Graham-Pintz-Yıldırım. - Charles R Greathouse IV, Jul 17 2015

Examples

			Runs begin:
(terms)         (prime signature)
{2, 3},         [1]
{14, 15},       [1,1]
{21, 22},       [1,1]
{33, 34, 35},   [1,1]
{38, 39},       [1,1]
{44, 45},       [1,2]
{57, 58},       [1,1]
{75, 76},       [1,2]
{85, 86, 87},   [1,1]
{93, 94, 95},   [1,1]
{98, 99},       [1,2]
...
		

Crossrefs

Main sequence is A052213.

Programs

  • Mathematica
    Split[Range[2,250], Sort[FactorInteger[#1][[All, 2]]] === Sort[FactorInteger[#2][[All, 2]]]&] // Select[#, Length[#] > 1&]& // Flatten
  • PARI
    is(n)=my(f=vecsort(factor(n)[,2])); f==vecsort(factor(n-1)[,2]) || f==vecsort(factor(n+1)[,2]) \\ Charles R Greathouse IV, Jul 17 2015
    
  • Python
    from sympy import factorint
    def aupto(limit):
        aset, prevsig = {2}, [1]
        for k in range(3, limit+2):
            sig = sorted(factorint(k).values())
            if sig == prevsig: aset.update([k - 1, k])
            prevsig = sig
        return sorted(aset)
    print(aupto(250)) # Michael S. Branicky, Sep 20 2021

A276553 Numbers n such that n^2 and (n + 1)^2 have the same number of divisors.

Original entry on oeis.org

2, 14, 15, 21, 33, 34, 38, 44, 57, 75, 81, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 272, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 405, 429, 434, 445
Offset: 1

Views

Author

K. D. Bajpai, Apr 10 2017

Keywords

Comments

Except for a(1), all the terms are composite.

Examples

			We see that 14^2 = 196, the divisors of which are 1, 2, 4, 7, 14, 28, 49, 98, 196, and there are nine of them. And we see that 15^2 = 225, the divisors of which are 1, 3, 5, 9, 15, 25, 45, 75, 225, and there are nine of them. Both 14^2 and 15^2 have the same number of divisors, hence 14 is in the sequence.
And we see that 16^2 = 256, the divisors of which are the powers of 2 from 2^0 to 2^8, that's nine divisors. Both 15^2 and 16^2 have the same number of divisors, hence 15 is also in the sequence.
But 16 is not in the sequence, since 17 is prime and 17^2 consequently only has three divisors.
		

Crossrefs

Cf. A052213 (a subsequence).
Positions of zeros in A284570.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    T:= map(t -> numtheory:-tau(t^2), [$1..N+1]):
    select(t -> T[t]=T[t+1], [$1..N]); # Robert Israel, Apr 10 2017
  • Mathematica
    Select[Range[1000], DivisorSigma[0, #^2] == DivisorSigma[0, (# + 1)^2] &]
  • PARI
    k=[]; for(n=1, 1000, a=numdiv(n^2); b=numdiv((n+1)^2); if(a==b, k=concat(k, n))); k
    
  • Python
    from sympy.ntheory import divisor_count
    print([n for n in range(1, 501) if divisor_count(n**2) == divisor_count((n + 1)**2)]) # Indranil Ghosh, Apr 10 2017
    (Scheme, with Antti Karttunen's IntSeq-library) (define A276553 (ZERO-POS 1 1 A284570)) ;; Antti Karttunen, Apr 15 2017

A333055 Numbers k such that k and k+1 have different (ordered) prime signatures and d(k) = d(k+1), where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

26, 104, 189, 231, 242, 243, 344, 374, 663, 664, 735, 776, 782, 874, 903, 1015, 1029, 1095, 1106, 1112, 1161, 1208, 1269, 1335, 1374, 1544, 1625, 1809, 1832, 1917, 1952, 1970, 2055, 2133, 2241, 2247, 2264, 2343, 2344, 2504, 2655, 2696, 2726, 2781, 2874, 2936
Offset: 1

Views

Author

Amiram Eldar, Mar 06 2020

Keywords

Comments

Apparently most of the numbers k such that k and k+1 have the same number of divisors (A005237) also have the same prime signature, i.e., they are also terms of A052213 which is a subsequence of A005237.
For example, up to 10^8 there are 9593611 terms in A005237, of them only 1573778 (about 16.4%) are not in A052213. This sequence in the complement of A052213 with respect to A005237.

Examples

			26 is a term since 26 = 2 * 13 and 27 = 3^3 have different prime signatures, and d(26) = d(27) = 4.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000], DivisorSigma[0, #] == DivisorSigma[0, #+1] && Sort[FactorInteger[#][[;;,2]]] != Sort[FactorInteger[#+1][[;;,2]]] &]

A085073 Smallest k such that n+k and n*k have the same prime signature, or 0 if no such number exists.

Original entry on oeis.org

2, 1, 7, 41, 15, 134, 3, 127, 11, 2, 3, 548, 2, 1, 3, 389, 5, 582, 2, 316, 1, 38, 3, 2216, 3, 2, 13, 212, 5, 2742, 2, 1669, 1, 1, 31, 2764, 2, 1, 13, 1094, 4, 2298, 3, 1, 123, 14, 11, 8912, 3, 202, 17, 2, 2, 1146, 23, 904, 1, 26, 3, 11028, 13, 22, 57, 3581, 37, 1194, 2, 172, 15
Offset: 1

Views

Author

Amarnath Murthy, Jul 01 2003

Keywords

Examples

			a(6) = 379 as 6*379 = 2*3*379 and 6+379 = 385 = 5*7*11 both have prime signature p*q*r.
		

Crossrefs

Cf. A052213 (a(n)=1), A085072.

Programs

  • Maple
    s:= proc(n) s(n):= sort(map(i-> i[2], ifactors(n)[2])) end:
    a:= proc(n) option remember; local k; for k
           while s(n*k)<>s(n+k) do od; k
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, Mar 06 2019
  • Mathematica
    kmax = 10^6;
    s[n_] := FactorInteger[n][[All, 2]] // Sort;
    a[n_] := Module[{k}, If[n == 1, Return[2]]; For[k = 1, k <= kmax, k++, If[s[n k] == s[n+k], Return[k]]]; 0];
    Array[a, 70] (* Jean-François Alcover, Nov 17 2020 *)
  • PARI
    sgntr(n) = vecsort(factor(n)[, 2]~);
    a(n) = {my(k=1); while (sgntr(n+k) != sgntr(n*k), k++); k; } \\ Michel Marcus, Nov 17 2020

Extensions

Corrected by Jason Earls, Jul 10 2003
More terms from David Wasserman, Jan 12 2005

A218455 First of a run of 6 consecutive numbers with same prime signature.

Original entry on oeis.org

380480345, 2713001274, 6282718946, 7209536449, 9809067073, 10684724346, 12008728850, 14824913049, 17231547073, 17552118546, 17659180314, 18036555273, 20473171322, 21507097001, 23676804346, 24742649321, 25401767522, 25694056449, 27656894273, 28259097818
Offset: 1

Views

Author

M. F. Hasler, Oct 29 2012

Keywords

Comments

A number n is in this sequence iff n and n+1 is in A218448; see the comment there for other characterizations in terms of membership in A175590 or A052214 or A052213.

Crossrefs

Programs

  • PARI
    is_A218455(n)={my(s(n)=vecsort(factor(n)[,2]),t=s(n));!for(m=n+1,n+5, t!=s(m) & return)}

Extensions

a(2)-a(20) from Donovan Johnson, Oct 29 2012

A279767 Numbers m such that m and m+2 have the same prime signature.

Original entry on oeis.org

3, 5, 11, 17, 18, 29, 33, 41, 50, 54, 55, 59, 71, 85, 91, 93, 101, 107, 137, 141, 143, 149, 159, 179, 183, 185, 191, 197, 201, 203, 213, 215, 217, 219, 227, 235, 239, 242, 247, 248, 265, 269, 281, 299, 301, 303, 306, 311, 319, 321, 327, 339, 340, 347, 348, 391, 393, 411, 413
Offset: 1

Views

Author

Altug Alkan, Dec 18 2016

Keywords

Comments

The sequence contains some terms such that m and m + 2k (k > 1) have the same prime signature. For some terms where m and m + 2k share the same prime signature this means that every alternate element between, and including m and m + 2k have the same prime signature. The first such example is where a(41951) = 402677, a(41953) = 402679, and a(41955) = 402681, share the same prime signature {1, 1}. Also the remaining alternate terms excluding endpoints share the same prime signature. Using the above example, a(41952) = 402678 and a(41954) = 402680 share the prime signature {1,1,3}. - Torlach Rush, Feb 25 2018

Examples

			18 is a term because 18 = 2 * 3^2 and 18 + 2 = 20 = 2^2 * 5.
19 is not a term because it is prime and 21 is the product of two primes, so the prime signatures are different.
		

Crossrefs

Programs

  • Mathematica
    primeSignature[n_] := Sort[Transpose[FactorInteger[n]][[2]]]; Select[ Range[2, 1000], primeSignature[#] == primeSignature[# + 2] &] (* Adapted from A052213 *)
  • PARI
    isok(n) = vecsort(factor(n)[,2]) == vecsort(factor(n+2)[,2]); \\ Michel Marcus, Feb 25 2018
Showing 1-10 of 18 results. Next