cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A050443 a(0)=4, a(1)=0, a(2)=0, a(3)=3; thereafter a(n) = a(n-3) + a(n-4).

Original entry on oeis.org

4, 0, 0, 3, 4, 0, 3, 7, 4, 3, 10, 11, 7, 13, 21, 18, 20, 34, 39, 38, 54, 73, 77, 92, 127, 150, 169, 219, 277, 319, 388, 496, 596, 707, 884, 1092, 1303, 1591, 1976, 2395, 2894, 3567, 4371, 5289, 6461, 7938, 9660, 11750, 14399, 17598, 21410, 26149, 31997
Offset: 0

Views

Author

Tony Davie (ad(AT)dcs.st-and.ac.uk), Dec 23 1999

Keywords

Comments

Related to Perrin sequence. a(p) is divisible by p for primes p.
Wells states that Mihaly Bencze [Beneze] (1998) proved the divisibility property for this sequence: that a(n) is always divisible by n when n is prime. - Gary W. Adamson, Nov 14 2006
As a(n) = trace(M^n) where M = [0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,0,0], the previous property comes from the fact that trace(M^n) = trace(M) (= 0) mod n for n prime. - Robert FERREOL, Apr 09 2024

Examples

			a(11) = 11 because a(7) = 7 and a(8) = 4.
		

References

  • David Wells, "Prime Numbers, the Most Mysterious Figures in Math", John Wiley & Sons, Inc.; 2005, p. 103.

Crossrefs

Column 3 of A306646.

Programs

  • GAP
    a:=[4,0,0,3];; for n in [5..60] do a[n]:=a[n-3]+a[n-4]; od; Print(a); # Muniru A Asiru, Mar 09 2019
  • Magma
    I:=[4,0,0,3]; [n le 4 select I[n] else Self(n-3) +Self(n-4): n in [1..60]]; // G. C. Greubel, Mar 04 2019
    
  • Mathematica
    LinearRecurrence[{0,0,1,1}, {4,0,0,3}, 60] (* G. C. Greubel, Mar 04 2019 *)
  • PARI
    polsym(x^4-x-1,55) \\ Joerg Arndt, Mar 04 2019
    
  • Sage
    ((4-x^3)/(1-x^3-x^4)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Mar 04 2019
    

Formula

G.f.: (4-x^3)/(1-x^3-x^4). - Christian G. Bower, Dec 23 1999
a(n) = (x_1)^n + (x_2)^n + (x_3)^n + (x_4)^n where (x_i) 1 <= i <= 4 are the roots of x^4 = x + 1. - Benoit Cloitre, Oct 27 2003
Let M = the 4 X 4 matrix [0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,0,0]; then a(n) = the leftmost term of M^n * [4,0,0,3]. Example: a(13) = 13 since M^13 * [4,0,0,3] = [13,21,18,20]. - Gary W. Adamson, Nov 14 2006
a(0) = 4 and a(n) = n*Sum_{k=1..floor(n/3)} binomial(k,n-3*k)/k for n > 0. - Seiichi Manyama, Mar 04 2019
From Aleksander Bosek, Mar 10 2019: (Start)
a(n+10) = a(n+5) + 2*a(n+3) + a(n).
a(n+11) = a(n+6) + 3*a(n+1) + 2*a(n).
a(n+12) = a(n+10) + 5*a(n+5) + a(n).
a(n+12) = 3*a(n+5) + a(n+3) + a(n).
a(n+13) = 3*a(n+6) + 2*a(n+1) + a(n).
a(n+14) = 2*a(n+8) + 3*a(n+3) + a(n).
a(n+15) = 2*a(n+7) + 4*a(n+5) + a(n).
a(n+15) = 2*a(n+9) + 4*a(n+1) + 3*a(n).
a(n+19) = a(n+17) + 5*a(n+5) + a(n).
a(n+20) = 5*a(n+10) + 6*a(n+5) + a(n).
a(n+22) = a*(n+21) + 5*a(n+5) + a(n).
a(n+25) = 2*a(n+21) + 5*a(n+5) + a(n).
a((s+4)*n+m) = Sum_{l=0..n} binomial(n-l,l)*a(s*n+l+m) for every m,s > 0.
a(m) = Sum_{l=0..n}(-1)^{n-l}*binomial(n-l,l)*a(m+n+3*l) for every m > 0. (End)
a(n) = 4*A017817(n) - A017817(n-3). - R. J. Mathar, Aug 10 2021

Extensions

More terms from Christian G. Bower, Dec 23 1999
More terms from Benoit Cloitre, Oct 27 2003

A014981 a(n) = c(prime(n))/prime(n), where c = Perrin sequence A001608 (starting 0,2,3,...) and prime(n) is the n-th prime.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 11, 28, 120, 197, 892, 2479, 4148, 11687, 56010, 271913, 461529, 2270882, 6599404, 11263855, 56250108, 164879269, 830987861, 7231032935, 21386730355, 36802336319, 109099442316, 187943217386
Offset: 1

Views

Author

Keywords

Crossrefs

See A001608, the main entry for the Perrin sequence.

Programs

  • PARI
    c(n) = polsym(x^3-x-1,n)[n+1]; \\ A001608
    a(n) = my(p=prime(n)); c(p)/p; \\ Michel Marcus, Mar 03 2022
Showing 1-2 of 2 results.