A052404 Numbers without 2 as a digit.
0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89
Offset: 1
References
- M. J. Halm, Word Weirdness, Mpossibilities 66 (Feb. 1998), p. 5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- M. J. Halm, Games
- M. F. Hasler, Numbers avoiding certain digits, OEIS Wiki, Jan 12 2020.
- Index entries for 10-automatic sequences.
Crossrefs
Programs
-
Haskell
a052404 = f . subtract 1 where f 0 = 0 f v = 10 * f w + if r > 1 then r + 1 else r where (w, r) = divMod v 9 -- Reinhard Zumkeller, Oct 07 2014
-
Magma
[ n: n in [0..89] | not 2 in Intseq(n) ]; // Bruno Berselli, May 28 2011
-
Maple
a:= proc(n) local l, m; l, m:= 0, n-1; while m>0 do l:= (d-> `if`(d<2, d, d+1))(irem(m, 9, 'm')), l od; parse(cat(l))/10 end: seq(a(n), n=1..100); # Alois P. Heinz, Aug 01 2016
-
Mathematica
ban2Q[n_]:=FreeQ[IntegerDigits[n],2]==True; Select[Range[0,89],ban2Q[#] &] (* Jayanta Basu, May 17 2013 *) Select[Range[0,100],DigitCount[#,10,2]==0&] (* Harvey P. Dale, Apr 13 2015 *)
-
PARI
lista(nn, d=2) = {for (n=0, nn, if (!vecsearch(vecsort(digits(n),,8),d), print1(n, ", ")););} \\ Michel Marcus, Feb 21 2015
-
PARI
apply( {A052404(n)=fromdigits(apply(d->d+(d>1),digits(n-1,9)))}, [1..99]) next_A052404(n, d=digits(n+=1))={for(i=1, #d, d[i]==2&&return((1+n\d=10^(#d-i))*d)); n} \\ least a(k) > n: if there's a digit 2 in n+1, replace the first occurrence by 3 and all following digits by 0. (A052404_vec(N)=vector(N, i, N=if(i>1, next_A052404(N))))(99) \\ first N terms select( {is_A052404(n)=!setsearch(Set(digits(n)),2)}, [0..99]) (A052404_upto(N)=select( is_A052404, [0..N]))(99) \\ M. F. Hasler, Jan 11 2020
-
Python
from gmpy2 import digits def A052404(n): return int(''.join(str(int(d)+1) if d>'1' else d for d in digits(n-1,9))) # Chai Wah Wu, Aug 30 2024
-
sh
seq 0 1000 | grep -v 2; # Joerg Arndt, May 29 2011
Formula
If the offset were changed to 0: a(0) = 0, a(n+1) = f(a(n)+1,a(n)+1) where f(x,y) = if x<10 and x<>2 then y else if x mod 10 = 2 then f(y+1,y+1) else f(floor(x/10),y). - Reinhard Zumkeller, Mar 02 2008
a(n) = replace digits d > 1 by d + 1 in base-9 representation of n - 1. - Reinhard Zumkeller, Oct 07 2014
Sum_{k>1} 1/a(k) = A082831 = 19.257356... (Kempner series). - Bernard Schott, Jan 12 2020, edited by M. F. Hasler, Jan 14 2020
Extensions
Offset changed by Reinhard Zumkeller, Oct 07 2014