cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052409 a(n) = largest integer power m for which a representation of the form n = k^m exists (for some k).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Greatest common divisor of all prime-exponents in canonical factorization of n for n>1: a(n)>1 iff n is a perfect power; a(A001597(k))=A025479(k). - Reinhard Zumkeller, Oct 13 2002
a(1) set to 0 since there is no largest finite integer power m for which a representation of the form 1 = 1^m exists (infinite largest m). - Daniel Forgues, Mar 06 2009
A052410(n)^a(n) = n. - Reinhard Zumkeller, Apr 06 2014
Positions of 1's are A007916. Smallest base is given by A052410. - Gus Wiseman, Jun 09 2020

Examples

			n = 72 = 2*2*2*3*3: GCD[exponents] = GCD[3,2] = 1. This is the least n for which a(n) <> A051904(n), the minimum of exponents.
For n = 10800 = 2^4 * 3^3 * 5^2, GCD[4,3,2] = 1, thus a(10800) = 1.
		

Crossrefs

Apart from the initial term essentially the same as A253641.
Differs from A051904 for the first time at n=72, where a(72) = 1, while A051904(72) = 2.
Differs from A158378 for the first time at n=10800, where a(10800) = 1, while A158378(10800) = 2.

Programs

Formula

a(1) = 0; for n > 1, a(n) = gcd(A067029(n), a(A028234(n))). - Antti Karttunen, Aug 07 2017

Extensions

More terms from Labos Elemer, Jun 17 2002