cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A051833 Primes of form (2*10^(5n) - 10^(4n) + 2*10^(3n) + 10^(2n) + 10^n + 1)/3.

Original entry on oeis.org

2, 64037, 66666663333334000000033333336666667
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 11 1999

Keywords

Comments

The Baxter-Hickerson function provides a number whose cube lacks zeros.
Next term has 665 digits and is in b-file.

Crossrefs

Programs

  • Mathematica
    Select[Table[(2*10^(5*n) - 10^(4*n) + 2*10^(3*n) + 10^(2*n) + 10^n + 1)/3, {n, 0, 150}], PrimeQ] (* Amiram Eldar, Jul 18 2025 *)

Formula

a(n) = A052427(A051832(n)). - Amiram Eldar, Jul 18 2025

A052044 Numbers k such that k^3 lacks the digit zero in its decimal expansion.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 38, 39, 41, 44, 45, 46, 49, 51, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 68, 71, 72, 75, 76, 77, 78, 81, 82, 83, 85, 88, 91, 92, 95, 96, 97, 98, 104, 105, 108, 111
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

This sequence is infinite since A052427 is a subsequence. - Amiram Eldar, Nov 23 2020

Crossrefs

Programs

Formula

a(n) = A052045(n)^(1/3). - Amiram Eldar, Nov 23 2020

A052045 Cubes lacking the digit zero in their decimal expansion.

Original entry on oeis.org

1, 8, 27, 64, 125, 216, 343, 512, 729, 1331, 1728, 2197, 2744, 3375, 4913, 5832, 6859, 9261, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 29791, 32768, 35937, 42875, 46656, 54872, 59319, 68921, 85184, 91125, 97336, 117649, 132651, 148877
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

This sequence is infinite since A052427(n)^3 is a term for all n>=0. - Amiram Eldar, Nov 23 2020

Crossrefs

Programs

  • Maple
    select(t -> not has(convert(t,base,10),0), [seq(m^3,m=1..10^3)]); # Robert Israel, Aug 24 2014
  • Mathematica
    Select[Range[53]^3, DigitCount[#, 10, 0] == 0 &] (* Amiram Eldar, Nov 23 2020 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (vecmin(digits(cub=n^3)), print1(cub, ", ")););} \\ Michel Marcus, Aug 25 2014
  • Python
    A052045 = [n**3 for n in range(1,10**5) if not str(n**3).count('0')]
    # Chai Wah Wu, Aug 24 2014
    

Formula

Intersection of A052382 and A000578; A168046(a(n))*A010057(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009
a(n) = A052044(n)^3. - Amiram Eldar, Nov 23 2020
Showing 1-3 of 3 results.