A052463 a(n) is the smallest nonnegative solution k to 24*k == 1 (mod 7^(2*n-2)).
0, 47, 2301, 112747, 5524601, 270705447, 13264566901, 649963778147, 31848225129201, 1560563031330847, 76467588535211501, 3746911838225363547, 183598680073042813801, 8996335323579097876247
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..600
- G. K. Patil, Ramanujan's Life And His Contributions In The Field Of Mathematics, International Journal of Scientific Research and Engineering Studies (IJSRES), 1(6) (2014), ISSN: 2349-8862.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences.
- Index entries for linear recurrences with constant coefficients, signature (50,-49).
Programs
-
Magma
I:=[0, 47]; [n le 2 select I[n] else 49*Self(n-1)-2: n in [1..20]]; // Vincenzo Librandi, Jul 01 2012
-
Mathematica
Table[PowerMod[24, -1, 7^(2b-2)], {b, 20}] CoefficientList[Series[(-49x^2+47x)/((1-x)(1-49x)),{x,0,30}],x] (* Vincenzo Librandi, Jul 01 2012 *) LinearRecurrence[{50,-49},{0,47,2301},20] (* Harvey P. Dale, Aug 23 2021 *)
Formula
G.f.: x^2*(-49*x + 47)/((1 - x)*(1 - 49*x)).
a(n) = 49*a(n-1) - 2. - Vincenzo Librandi, Jul 01 2012
a(n) = 23*49^n/1176 + 1/24, n > 1. - R. J. Mathar, Oct 09 2019
Extensions
Name edited by Petros Hadjicostas, Oct 09 2019
Comments