A052462
a(n) is the minimal positive integral solution k to 24*k == 1 (mod 5^n).
Original entry on oeis.org
4, 24, 99, 599, 2474, 14974, 61849, 374349, 1546224, 9358724, 38655599, 233968099, 966389974, 5849202474, 24159749349, 146230061849, 603993733724, 3655751546224, 15099843343099, 91393788655599, 377496083577474
Offset: 1
From _Petros Hadjicostas_, Jul 29 2020: (Start)
A000041(a(1)) = A000041(4) = 5 == 0 (mod 5).
A000041(a(2)) = A000041(24) = 1575 == 0 (mod 5^2).
A000041(a(3)) = A000041(99) = 169229875 == 0 (mod 5^3).
A000041(a(4)) = A000041(599) = 435350207840317348270000 == 0 (mod 5^4). (End)
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences.
- Index entries for linear recurrences with constant coefficients, signature (1,25,-25).
-
I:=[4, 24, 99]; [n le 3 select I[n] else Self(n-1)+25*Self(n-2)-25*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 01 2012
-
Table[PowerMod[24, -1, 5^a], {a, 21}]
CoefficientList[Series[(-25x^2+20x+4)/((1-x)(1-5x)(1+5x)),{x,0,30}],x] (* Vincenzo Librandi, Jul 01 2012 *)
-
a(n) = lift(Mod(24, 5^n)^-1) \\ David A. Corneth and Petros Hadjicostas, Jul 29 2020
A052465
a(n) is the smallest positive integral solution k to 24*k == 1 (mod 11^n).
Original entry on oeis.org
6, 116, 721, 14031, 87236, 1697746, 10555551, 205427261, 1277221666, 24856698576, 154543821581, 3007660527691, 18699802411296, 363926923850606, 2262676091766811, 44035157785923321, 273783807103784126, 5328254092096721836, 33127840659557879241, 644718745143703342151, 4008468719806503388156
Offset: 1
From _Petros Hadjicostas_, Jul 29 2020: (Start)
A000041(a(1)) = A000041(6) = 11 == 0 (mod 11^1).
A000041(a(2)) = A000041(116) = 1188908248 == 0 (mod 11^2).
A000041(a(3)) = A000041(721) = 161061755750279477635534762 == 0 (mod 11^3). (End)
- Vincenzo Librandi, Table of n, a(n) for n = 1..900
- A. O. L. Atkin, Proof of a Conjecture of Ramanujan, Glasgow Math. J. 8 (1967), 14-32.
- G. K. Patil, Ramanujan's Life And His Contributions In The Field Of Mathematics, International Journal of Scientific Research and Engineering Studies (IJSRES), 1(6) (2014), ISSN: 2349-8862.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences.
- Index entries for linear recurrences with constant coefficients, signature (1,121,-121).
-
I:=[6, 116, 721]; [n le 3 select I[n] else Self(n-1)+121*Self(n-2)-121*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 01 2012
-
Table[PowerMod[24, -1, 11^c], {c, 20}]
CoefficientList[Series[(-121x^2+110x+6)/((1-x)(1-121*x^2)),{x,0,30}],x] (* Vincenzo Librandi, Jul 01 2012 *)
LinearRecurrence[{1,121,-121},{6,116,721},20] (* Harvey P. Dale, Apr 27 2014 *)
-
a(n) = lift(Mod(24, 11^n)^-1) \\ David A. Corneth, Jul 29 2020
-
def a(n): return 24.inverse_mod(11^n)
print([a(n) for n in range(1, 22)]) # Peter Luschny, Jul 29 2020
A052466
a(n) is the smallest positive solution k to 24*k == 1 (mod 13^n).
Original entry on oeis.org
6, 162, 1007, 27371, 170176, 4625692, 28759737, 781741941, 4860395546, 132114388022, 821406847267, 22327331575711, 138817757188116, 3773319036295152, 23460200964791597, 637690917133880681, 3964773963049779886, 107769764995625835082, 670046799755412800727
Offset: 1
From _Petros Hadjicostas_, Jul 29 2020: (Start)
The only value of the constant K(n) that appears explicitly in Atkin and O'Brien (1967) is K(2) = 45 (see p. 453). We then have
P(169*a(2) - 7) - K(2)*P(a(2)) = P(169*162 - 7) - 45*P(162) = A000041(27371) - 45*A000041(162) = A000041(27371) - 5846125708665 == 0 (mod 13^2).
Thus, we must have A000041(27371) == 99 (mod 169). (End)
-
I:=[6, 162, 1007]; [n le 3 select I[n] else Self(n-1)+169*Self(n-2)-169*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 01 2012
-
Table[PowerMod[24, -1, 13^d], {d, 20}]
CoefficientList[Series[(-169x^2+156x+6)/((1-x)(1-13x)(1+13x)),{x,0,40}],x] (* Vincenzo Librandi, Jul 01 2012 *)
LinearRecurrence[{1,169,-169},{6,162,1007},30] (* Harvey P. Dale, Mar 15 2015 *)
-
a(n) = lift(Mod(24, 13^n)^-1) \\ Petros Hadjicostas, Jul 29 2020
-
def a(n): return 24.inverse_mod(13^n)
print([a(n) for n in range(1, 20)]) # Peter Luschny, Jul 30 2020
A327770
a(n) = (23 * 7^(2*n) + 1)/24. Sequence related to the properties of the partition function A000041 modulo a power of 7.
Original entry on oeis.org
1, 47, 2301, 112747, 5524601, 270705447, 13264566901, 649963778147, 31848225129201, 1560563031330847, 76467588535211501, 3746911838225363547, 183598680073042813801, 8996335323579097876247, 440820430855375795936101, 21600201111913414000868947
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..500
- G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128; see pp. 118 and 124.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences.
- Wikipedia, G. N. Watson.
- Index entries for linear recurrences with constant coefficients, signature (50,-49).
-
CoefficientList[Series[(1 - 3 x)/((1 - x) (1 - 49 x)), {x, 0, 15}], x] (* Michael De Vlieger, Sep 27 2019 *)
LinearRecurrence[{50,-49},{1,47},20] (* Harvey P. Dale, Mar 09 2023 *)
-
a(n) = (23 * 7^(2*n) + 1)/24; \\ Michel Marcus, Sep 25 2019
-
Vec((1 - 3*x) / ((1 - x)*(1 - 49*x)) + O(x^20)) \\ Colin Barker, Sep 25 2019
A327771
a(n) = p(49*n + 47)/49, where p(k) denotes the k-th partition number (i.e., A000041).
Original entry on oeis.org
2546, 2410496, 508344041, 48286178405, 2734250190712, 106823899382728, 3143746885297470, 73830872731991927, 1440681502991063990, 24058683492974200054, 351628923073820626951, 4577202012225445531319, 53811955397591074514675, 577896157936323089053580
Offset: 0
-
Table[PartitionsP[49n+47]/49,{n, 0, 13}] (* Metin Sariyar, Sep 25 2019 *)
-
a(n) = numbpart(49*n + 47)/49; \\ Michel Marcus, Sep 25 2019
Showing 1-5 of 5 results.
Comments