A052512 Number of rooted labeled trees of height at most 2.
0, 1, 2, 9, 40, 205, 1176, 7399, 50576, 372537, 2936080, 24617131, 218521128, 2045278261, 20112821288, 207162957135, 2228888801056, 24989309310961, 291322555295904, 3524580202643155, 44176839081266360, 572725044269255661, 7668896804574138232, 105920137923940473079
Offset: 0
Examples
From _Robert FERREOL_, Mar 05 2016: (Start) For n = 3 the a(3) = 9 mappings from {a,b,c} into itself are: f_1(a) = f_1(b) = f_1(c) = a f_2(c) = b, f_2(b) = f_2(a) = a f_3(b) = c, f_3(c) = f_3(a) = a and 6 others, associated to b and c. (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 58
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x*Exp(x*Exp(x)) )); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019 -
Maple
spec := [S,{S=Prod(Z,Set(T1)), T2=Z, T1=Prod(Z,Set(T2))},labeled]: seq(combstruct[count](spec,size=n), n=0..20); # second Maple program: a:= n-> n*add(binomial(n-1, k)*(n-k-1)^k, k=0..n-1); seq(a(n), n=0..30); # Alois P. Heinz, Mar 15 2013
-
Mathematica
nn=20; a=x Exp[x]; Range[0,nn]! CoefficientList[Series[x Exp[a], {x,0,nn}], x] (* Geoffrey Critzer, Sep 19 2012 *)
-
PARI
N=33; x='x+O('x^N); egf=x*exp(x*exp(x)); v=Vec(serlaplace(egf)); vector(#v+1,n,if(n==1,0,v[n-1])) /* Joerg Arndt, Sep 15 2012 */
-
Sage
m = 20; T = taylor(x*exp(x*exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019
Formula
E.g.f.: x*exp(x*exp(x)).
a(n) = n * A000248(n-1). - Olivier Gérard, Aug 03 2012.
a(n) = Sum_{k=0..n-1} n*C(n-1,k)*(n-k-1)^k. - Alois P. Heinz, Mar 15 2013
Comments