cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052512 Number of rooted labeled trees of height at most 2.

Original entry on oeis.org

0, 1, 2, 9, 40, 205, 1176, 7399, 50576, 372537, 2936080, 24617131, 218521128, 2045278261, 20112821288, 207162957135, 2228888801056, 24989309310961, 291322555295904, 3524580202643155, 44176839081266360, 572725044269255661, 7668896804574138232, 105920137923940473079
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equivalently, number of mappings f from a set of n elements into itself such that f o f (f applied twice) is constant. - Robert FERREOL, Mar 05 2016

Examples

			From _Robert FERREOL_, Mar 05 2016: (Start)
For n = 3 the a(3) = 9 mappings from {a,b,c} into itself are:
f_1(a) = f_1(b) = f_1(c) = a
f_2(c) = b, f_2(b) = f_2(a) = a
f_3(b) = c, f_3(c) = f_3(a) = a
and 6 others, associated to b and c.
(End)
		

Crossrefs

Cf. A000248 (forests with n nodes and height at most 1).
Cf. A000551.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x*Exp(x*Exp(x)) )); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{S=Prod(Z,Set(T1)), T2=Z, T1=Prod(Z,Set(T2))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second Maple program:
    a:= n-> n*add(binomial(n-1, k)*(n-k-1)^k, k=0..n-1);
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 15 2013
  • Mathematica
    nn=20; a=x Exp[x]; Range[0,nn]! CoefficientList[Series[x Exp[a], {x,0,nn}], x] (* Geoffrey Critzer, Sep 19 2012 *)
  • PARI
    N=33;  x='x+O('x^N);
    egf=x*exp(x*exp(x));
    v=Vec(serlaplace(egf));
    vector(#v+1,n,if(n==1,0,v[n-1]))
    /* Joerg Arndt, Sep 15 2012 */
    
  • Sage
    m = 20; T = taylor(x*exp(x*exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019

Formula

E.g.f.: x*exp(x*exp(x)).
a(n) = n * A000248(n-1). - Olivier Gérard, Aug 03 2012.
a(n) = Sum_{k=0..n-1} n*C(n-1,k)*(n-k-1)^k. - Alois P. Heinz, Mar 15 2013