cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000949 Number of forests with n nodes and height at most 2.

Original entry on oeis.org

1, 1, 3, 16, 101, 756, 6607, 65794, 733833, 9046648, 121961051, 1782690174, 28055070397, 472594822324, 8479144213191, 161340195463066, 3243707386310033, 68679247688467056, 1526976223741111987, 35557878951515668726, 865217354118762606021
Offset: 0

Views

Author

Keywords

Comments

Equivalently, the number of mappings from a set of n elements into itself where f(f(x)) = f(f(f(x))). - Chad Brewbaker, Mar 26 2014

Examples

			G.f. = 1 + x + 3*x^2 + 16*x^3 + 101*x^4 + 756*x^5 + 6607*x^6 + 65794*x^7 + ... - _Michael Somos_, Jul 03 2018
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A210725. - Alois P. Heinz, Mar 15 2013

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)
    a[ n_] := If[ n < 0, 0, 1 + n! Sum[ Sum[ k^(n - m - k) m^k / (k! (n - m - k)!), {k, n - m}] / m!, {m, n - 1}]]; (* Michael Somos, Jul 03 2018 *)
  • Maxima
    a(n):=n!*sum(sum((k^(n-m-k)*m^k)/(k!*(n-m-k)!),k,1,n-m)/m!,m,1,n-1)+1; /* Vladimir Kruchinin, May 28 2011 */
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x*exp(x*exp(x))))) /* show terms with a(0)=1 */ /* Joerg Arndt, May 28 2011 */

Formula

E.g.f.: exp(x*exp(x*exp(x))).
a(n) = n!*sum(m=1..n-1, sum(k=1..n-m, (k^(n-m-k)*m^k)/(k!*(n-m-k)!))/m!)+1. - Vladimir Kruchinin, May 28 2011

Extensions

More terms from Vladeta Jovovic, Apr 07 2001

A000951 Number of forests with n nodes and height at most 4.

Original entry on oeis.org

1, 3, 16, 125, 1296, 16087, 229384, 3687609, 66025360, 1303751051, 28151798544, 659841763957, 16681231615816, 452357366282655, 13095632549137576, 403040561722348913, 13138626717852194976, 452179922268565180819, 16381932383826669204640
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A210725. - Alois P. Heinz, Mar 15 2013

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x*Exp[x*Exp[x]]]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)

Formula

E.g.f.: exp(x*exp(x*exp(x*exp(x*exp(x))))).

Extensions

More terms from Vladeta Jovovic, Apr 07 2001

A185298 Expansion of e.g.f. x*exp(x)*exp(x*exp(x)).

Original entry on oeis.org

0, 1, 4, 18, 92, 520, 3222, 21700, 157544, 1224576, 10133450, 88843084, 821832156, 7992373168, 81458868974, 867700216380, 9636146477648, 111323478770560, 1335253363581330, 16598183219157772, 213488758730421380, 2837046652845555696, 38899888173340835894
Offset: 0

Views

Author

Geoffrey Critzer, Feb 20 2011

Keywords

Comments

a(n) is the number of ways to designate an element in each block of the set partitions of {1,2,...,n} and then designate a block.
Inverse binomial transform: b(n) = Sum (-1)^(n-k)*C(n,k)*a(k), k=0..n of A052512. - Alexander R. Povolotsky, Oct 01 2011
Number of pointed set partitions of pointed sets k[1...k...n] for any point k. - Gus Wiseman, Sep 27 2015
Exponential series reversal gives A207833 with alternating signs: 1, -4, 30, -332, 4880, ... . - Vladimir Reshetnikov, Aug 04 2019

Examples

			The a(2) = 4 pointed set partitions are 1[1[12]], 1[1[1]2[2]], 2[1[1]2[2]], 2[2[12]].
The a(3) = 18 pointed set partitions are 1[1[123]], 1[1[1]2[23]], 1[1[1]3[23]], 1[1[12]3[3]], 1[1[13]2[2]], 1[1[1]2[2]3[3]], 2[2[123]], 2[1[1]2[23]], 2[1[13]2[2]], 2[2[2]3[13]], 2[2[12]3[3]], 2[1[1]2[2]3[3]], 3[3[123]], 3[1[1]3[23]], 3[1[12]3[3]], 3[2[2]3[13]], 3[2[12]3[3]], 3[1[1]2[2]3[3]].
		

Crossrefs

Programs

  • Mathematica
    nn=30; a=x Exp[x]; Range[0,nn]! CoefficientList[Series[a Exp[a], {x,0,nn}],x]
  • PARI
    x='x+O('x^33); concat([0],Vec(serlaplace(x*exp(x)*exp(x*exp(x))))) \\ Joerg Arndt, Oct 04 2015

Formula

E.g.f.: A(A(x)) where A(x) = x*exp(x).
a(n) = Sum_{k=1..n} binomial(n,k)*k^(n-k+1). - Vladimir Kruchinin, Sep 23 2011
O.g.f.: Sum_{k>=1} k*x^k/(1 - k*x)^(k+1). - Ilya Gutkovskiy, Oct 09 2018
a(n) ~ exp(r*exp(r) + r - n) * n^(n + 1/2) / (r^(n - 1/2) * sqrt(1 + exp(r)*(1 + 3*r + r^2))), where r = 2*LambertW(exp(1/4)*sqrt(n)/2) - 1/2 + 1/(16*LambertW(exp(1/4)*sqrt(n)/2)^2 + LambertW(exp(1/4)*sqrt(n)/2) - 1). - Vaclav Kotesovec, Mar 21 2023

A000950 Number of forests with n nodes and height at most 3.

Original entry on oeis.org

1, 3, 16, 125, 1176, 12847, 160504, 2261289, 35464816, 612419291, 11539360944, 235469524237, 5170808565976, 121535533284999, 3043254281853496, 80852247370051793, 2270951670959226336, 67221368736302224819, 2091039845329887687136
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A210725. - Alois P. Heinz, Mar 15 2013

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x*Exp[x]]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)

Formula

E.g.f.: exp(x*exp(x*exp(x*exp(x)))).

Extensions

More terms from Vladeta Jovovic, Apr 07 2001

A116071 Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 41, 40, 18, 4, 1, 196, 205, 100, 30, 5, 1, 1057, 1176, 615, 200, 45, 6, 1, 6322, 7399, 4116, 1435, 350, 63, 7, 1, 41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1, 293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2006

Keywords

Comments

Column 0 = A000248 (Number of forests with n nodes and height at most 1).
Column 1 = A052512 (Number of labeled trees of height 2).
Row sums = A080108 (Sum_{k=1..n} k^(n-k) * C(n-1,k-1)).
Central terms = A116072(n) = (n+1) * A000108(n) * A000248(n).
From Peter Bala, Sep 13 2012: (Start)
For commuting lower unitriangular matrix A and lower triangular matrix B we define A raised to the matrix power B, denoted by A^B, to be the lower unitriangular matrix Exp(B*Log(A)). Here Exp denotes the matrix exponential defined by the power series
Exp(A) = 1 + A + A^2/2! + A^3/3! + ...
and the matrix logarithm Log(A) is defined by the series
Log(A) = (A-1) - 1/2*(A-1)^2/2 + 1/3*(A-1)^3 - ....
Let A = [f(x),x] and B = [g(x),x] be exponential Riordan arrays in the Appell subgroup and suppose f(0) = 1. Then A and B commute and A^B is the exponential Riordan array [exp(g(x)*log(f(x))),x], also belonging to the Appell group. In the present case we are taking A = B = [exp(x),x], equal to the Pascal triangle A007318.
For any lower unitriangular matrix A (with, say, rational entries) the infinite tower of powers A^(A^(A^(...))) is well-defined (and also has rational entries). An example is given in the Formula section. (End)

Examples

			E.g.f.: E(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2/2!
  + (10 + 9*y + 3*y^2 + y^3)*x^3/3!
  + (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4/4!
  + (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5/5! +...
where E(x,y) = exp(x*y) * exp(x*exp(x)).
O.g.f.: A(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2
  + (10 + 9*y + 3*y^2 + y^3)*x^3
  + (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4
  + (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5 +...
where
A(x,y) = 1/(1-x*y) + x/(1-x*(y+1))^2 + x^2/(1-x*(y+2))^3 + x^3/(1-x*(y+3))^4 + x^4/(1-x*(y+4))^5 + x^5/(1-x*(y+5))^6 + x^6/(1-x*(y+6))^7 + x^7/(1-x*(y+7))^8 +...
Triangle begins:
  1;
  1, 1;
  3, 2, 1;
  10, 9, 3, 1;
  41, 40, 18, 4, 1;
  196, 205, 100, 30, 5, 1;
  1057, 1176, 615, 200, 45, 6, 1;
  6322, 7399, 4116, 1435, 350, 63, 7, 1;
  41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1;
  293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1; ...
		

Crossrefs

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[Exp[# Exp[#]]&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
  • PARI
    /* By definition C^C: */
    {T(n,k)=local(A, C=matrix(n+1,n+1,r,c,binomial(r-1,c-1)), L=matrix(n+1,n+1,r,c,if(r==c+1,c))); A=sum(m=0,n,L^m*C^m/m!); A[n+1,k+1]}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* From e.g.f.: */
    {T(n,k)=local(A=1);A=exp( x*y + x*exp(x +x*O(x^n)) );n!*polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* From o.g.f. (Paul D. Hanna, Aug 03 2014): */
    {T(n,k)=local(A=1);A=sum(k=0, n, x^k/(1 - x*(k+y) +x*O(x^n))^(k+1));polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* From row polynomials (Paul D. Hanna, Aug 03 2014): */
    {T(n,k)=local(R);R=sum(k=0,n,(k+y)^(n-k)*binomial(n,k));polcoeff(R,k,y)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* From formula for T(n,k) (Paul D. Hanna, Aug 03 2014): */
    {T(n,k) = sum(j=0,n-k, binomial(n,j) * binomial(n-j,k) * j^(n-k-j))}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

E.g.f.: exp( x*exp(x) + x*y ).
From Peter Bala, Sep 13 2012: (Start)
Exponential Riordan array [exp(x*exp(x)),x] belonging to the Appell group. Thus the e.g.f. for the k-th column of the triangle is x^k/k!*exp(x*exp(x)).
The inverse array, denote it by X, is a signed version of A215652. The infinite tower of matrix powers X^(X^(X^(...))) equals the inverse of Pascal's triangle. (End)
O.g.f.: Sum_{n>=0} x^n / (1 - x*(n+y))^(n+1). - Paul D. Hanna, Aug 03 2014
G.f. for row n: Sum_{k=0..n} binomial(n,k) * (k + y)^(n-k) for n>=0. - Paul D. Hanna, Aug 03 2014
T(n,k) = Sum_{j=0..n-k} C(n,j) * C(n-j,k) * j^(n-k-j) = A000248(n-k)*C(n,k). - Paul D. Hanna, Aug 03 2014
Infinitesimal generator is A216973. - Peter Bala, Feb 13 2017

A362788 Triangle read by rows, T(n, k) = RisingFactorial(n - k, k) * Stirling2(n - k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 3, 6, 0, 4, 36, 0, 5, 140, 60, 0, 6, 450, 720, 0, 7, 1302, 5250, 840, 0, 8, 3528, 30240, 16800, 0, 9, 9144, 151704, 196560, 15120, 0, 10, 22950, 695520, 1764000, 453600, 0, 11, 56210, 2994750, 13471920, 7761600, 332640
Offset: 0

Views

Author

Peter Luschny, May 04 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 2;
[4] 0, 3,    6;
[5] 0, 4,   36;
[6] 0, 5,  140,    60;
[7] 0, 6,  450,   720;
[8] 0, 7, 1302,  5250,   840;
[9] 0, 8, 3528, 30240, 16800;
		

Crossrefs

Cf. A052512 (row sums), A362369, A362789.

Programs

  • Maple
    T := (n, k) -> pochhammer(n - k, k) * Stirling2(n - k, k):
    seq(seq(T(n, k), k = 0..iquo(n,2)), n = 0..12);
  • SageMath
    def A362788(n, k):
        return rising_factorial(n - k, k) * stirling_number2(n - k, k)
    for n in range(10):
        print([A362788(n, k) for k in range(n//2 + 1)])

A216255 Triangle read by rows: T(n,k) is the number of labeled rooted trees of height at most 2 that have exactly k nodes at a distance 2 from the root; n>=1, 0<=k<=n-1.

Original entry on oeis.org

1, 2, 0, 3, 6, 0, 4, 24, 12, 0, 5, 60, 120, 20, 0, 6, 120, 540, 480, 30, 0, 7, 210, 1680, 3780, 1680, 42, 0, 8, 336, 4200, 17920, 22680, 5376, 56, 0, 9, 504, 9072, 63000, 161280, 122472, 16128, 72, 0, 10, 720, 17640, 181440, 787500, 1290240, 612360, 46080, 90, 0
Offset: 1

Views

Author

Geoffrey Critzer, Mar 15 2013

Keywords

Comments

Row sums = A052512.
Column k=1: A007531.

Examples

			1;
2,  0;
3,  6,   0;
4,  24,  12,    0;
5,  60,  120,   20,     0;
6,  120, 540,   480,    30,     0;
7,  210, 1680,  3780,   1680,   42,      0;
8,  336, 4200,  17920,  22680,  5376,    56,     0;
9,  504, 9072,  63000,  161280, 122472,  16128,  72,    0;
10, 720, 17640, 181440, 787500, 1290240, 612360, 46080, 90, 0;
T(4,1) = 24 because there is only one unlabeled tree on 4 nodes with exactly 1 node at distance two from the root.  It has 24 labelings.
.......o......
....../.\.....
.....o...o....
..../.........
...o..........
		

Programs

  • Maple
    T:= (n, k)-> n*binomial(n-1,k)*(n-k-1)^k:
    seq(seq(T(n, k), k=0..n-1), n=1..12);  # Alois P. Heinz, Mar 15 2013
  • Mathematica
    nn=10;a=NestList[x Exp[#]&,y x,nn];f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[a[[3]],{x,0,nn}],{x,y}]]//Grid

Formula

E.g.f.: x*exp(x*exp(y*x)).
T(n,k) = n*C(n-1,k)*(n-k-1)^k. - Alois P. Heinz, Mar 15 2013

A220233 Triangular array read by rows. T(n,k) is the number of labeled rooted trees of height at most 2 with exactly k leaves at a distance 1 from the root, n>=1, 0<=k<=n-1.

Original entry on oeis.org

0, 0, 2, 6, 0, 3, 12, 24, 0, 4, 80, 60, 60, 0, 5, 390, 480, 180, 120, 0, 6, 2352, 2730, 1680, 420, 210, 0, 7, 15176, 18816, 10920, 4480, 840, 336, 0, 8, 106416, 136584, 84672, 32760, 10080, 1512, 504, 0, 9, 801450, 1064160, 682920, 282240, 81900, 20160, 2520, 720, 0, 10
Offset: 1

Views

Author

Geoffrey Critzer, Dec 08 2012

Keywords

Comments

Row sums = A052512 for n>1. Column for k=0 is A220232.

Examples

			Triangle T(n,k) begins:
     0;
     0,    2;
     6,    0,    3;
    12,   24,    0,   4;
    80,   60,   60,   0,   5;
   390,  480,  180, 120,   0, 6;
  2352, 2730, 1680, 420, 210, 0, 7;
  ...
		

Programs

  • Mathematica
    nn=7;f[list_]:=Select[list,#>0&];a=x (Exp[x]-1+y);Prepend[Drop[Map[Insert[#,0,-2]&,Map[f,Range[0,nn]!CoefficientList[Series[x (Exp[a]-1+y),{x,0,nn}],{x,y}]]],2],{0}]//Grid

Formula

E.g.f.: x*(exp(x*(exp(x) -1 + y)) - 1 + y) (letting T(1,1)=1).

A259760 Triangle read by rows: T(n,k) is the number of partial idempotent mappings (of an n-chain) with breadth exactly k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 10, 1, 4, 18, 40, 41, 1, 5, 30, 100, 205, 196, 1, 6, 45, 200, 615, 1176, 1057, 1, 7, 63, 350, 1435, 4116, 7399, 6322, 1, 8, 84, 560, 2870, 10976, 29596, 50576, 41393, 1, 9, 108, 840, 5166, 24696, 88788, 227592, 372537, 293608
Offset: 0

Views

Author

Wafa AlNadabi, Jul 04 2015

Keywords

Examples

			T(3,2) = 9 because there are exactly 9 partial idempotent mappings (of a 3-chain) with breadth exactly 2, namely: (12-->11), (12-->22), (12-->12), (13-->11), (13-->33), (13-->13), (23-->22), (23-->33), (23-->23).
Triangle starts:
1;
1, 1;
1, 2, 3;
1, 3, 9, 10;
1, 4, 18, 40, 41;
...
		

References

  • F. AlKharosi, W. AlNadabi and A. Umar, "Combinatorial results for idempotents in full and partial transformation semigroups", (submitted).

Crossrefs

Row sums give A080108(n+1).

Programs

  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(n,k)*sum(m=0, k, binomial(k,m)*m^(k-m)), ", ");); print(););} \\ Michel Marcus, Jul 15 2015

Formula

T(n,k) = binomial(n,k) * Sum_{m=0..k} binomial(k,m)*m^(k-m).

Extensions

More terms from Michel Marcus, Jul 15 2015
Showing 1-9 of 9 results.