A181504
A000272(n+1) - A000951(n), n >= 6. Number of forests of rooted labeled trees with n nodes and height >= 5.
Original entry on oeis.org
720, 32760, 1095360, 33974640, 1054196640, 33765565680, 1132318630080, 40012680759480, 1493837702076720, 58961961488790360, 2459382489787466880, 108300904378742056800, 5028206935516237005120
Offset: 6
A000949
Number of forests with n nodes and height at most 2.
Original entry on oeis.org
1, 1, 3, 16, 101, 756, 6607, 65794, 733833, 9046648, 121961051, 1782690174, 28055070397, 472594822324, 8479144213191, 161340195463066, 3243707386310033, 68679247688467056, 1526976223741111987, 35557878951515668726, 865217354118762606021
Offset: 0
G.f. = 1 + x + 3*x^2 + 16*x^3 + 101*x^4 + 756*x^5 + 6607*x^6 + 65794*x^7 + ... - _Michael Somos_, Jul 03 2018
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)
a[ n_] := If[ n < 0, 0, 1 + n! Sum[ Sum[ k^(n - m - k) m^k / (k! (n - m - k)!), {k, n - m}] / m!, {m, n - 1}]]; (* Michael Somos, Jul 03 2018 *)
-
a(n):=n!*sum(sum((k^(n-m-k)*m^k)/(k!*(n-m-k)!),k,1,n-m)/m!,m,1,n-1)+1; /* Vladimir Kruchinin, May 28 2011 */
-
x='x+O('x^66); Vec(serlaplace(exp(x*exp(x*exp(x))))) /* show terms with a(0)=1 */ /* Joerg Arndt, May 28 2011 */
A060905
Expansion of e.g.f. exp(x*exp(x) + 1/2*x^2*exp(x)^2).
Original entry on oeis.org
1, 1, 4, 19, 110, 751, 5902, 52165, 509588, 5437729, 62828306, 780287839, 10351912276, 145944541159, 2176931651546, 34225419288421, 565282627986368, 9779830102138945, 176776613812205074, 3330780287838743575
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^2/2],{x,0,nn}],x] (* Geoffrey Critzer, Sep 18 2012 *)
-
a(n):=sum(sum(k^(n-k)/(n-k)!*binomial(m,k-m)*(1/2)^(k-m),k,m,n)/m!,m,1,n); /* Vladimir Kruchinin, Aug 20 2010 */
A060913
E.g.f.: exp(x*exp(x*exp(x*exp(x))) + 1/3*x^3*exp(x*exp(x*exp(x)))^3).
Original entry on oeis.org
1, 1, 3, 18, 157, 1656, 20727, 300784, 4955337, 91229616, 1853584651, 41147256624, 989990665677, 25647894553048, 711630284942319, 21049888453838136, 661180220075555473, 21976354057916680416
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
nn=20; a=x Exp[x]; b=x Exp[a]; c=x Exp[b]; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0,nn]! CoefficientList[Series[Exp[c+c^3/3], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 23 2012 *)
A210725
Triangle read by rows: T(n,k) = number of forests of labeled rooted trees with n nodes and height at most k (n>=1, 0<=k<=n-1).
Original entry on oeis.org
1, 1, 3, 1, 10, 16, 1, 41, 101, 125, 1, 196, 756, 1176, 1296, 1, 1057, 6607, 12847, 16087, 16807, 1, 6322, 65794, 160504, 229384, 257104, 262144, 1, 41393, 733833, 2261289, 3687609, 4480569, 4742649, 4782969, 1, 293608, 9046648, 35464816, 66025360, 87238720, 96915520, 99637120, 100000000
Offset: 1
Triangle begins:
1;
1, 3;
1, 10, 16;
1, 41, 101, 125;
1, 196, 756, 1176, 1296;
1, 1057, 6607, 12847, 16087, 16807;
...
-
f:= proc(k) f(k):= `if`(k<0, 1, exp(x*f(k-1))) end:
T:= (n, k)-> coeff(series(f(k), x, n+1), x, n) *n!:
seq(seq(T(n, k), k=0..n-1), n=1..9); # Alois P. Heinz, May 30 2012
# second Maple program:
T:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
binomial(n-1, j-1)*j*T(j-1, h-1)*T(n-j, h), j=1..n))
end:
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Aug 21 2017
-
f[?Negative] = 1; f[k] := Exp[x*f[k-1]]; t[n_, k_] := Coefficient[Series[f[k], {x, 0, n+1}], x, n]*n!; Table[Table[t[n, k], {k, 0, n-1}], {n, 1, 9}] // Flatten (* Jean-François Alcover, Oct 30 2013, after Maple *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def T(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*T(j - 1, h - 1)*T(n - j, h) for j in range(1, n + 1)])
for n in range(1, 11): print([T(n, k) for k in range(n)]) # Indranil Ghosh, Aug 21 2017, after second Maple code
A000950
Number of forests with n nodes and height at most 3.
Original entry on oeis.org
1, 3, 16, 125, 1176, 12847, 160504, 2261289, 35464816, 612419291, 11539360944, 235469524237, 5170808565976, 121535533284999, 3043254281853496, 80852247370051793, 2270951670959226336, 67221368736302224819, 2091039845329887687136
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x*Exp[x]]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)
A060906
E.g.f.: exp(x*exp(x) + 1/3*x^3*exp(x)^3).
Original entry on oeis.org
1, 1, 3, 12, 73, 556, 4737, 44122, 453441, 5186664, 65671201, 906052654, 13418086497, 211472682604, 3535616946513, 62621439810066, 1172370604136833, 23118679430573008, 478329265510033473, 10349724555927678934, 233633352312272612001, 5492655756487132979796
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^3/3],{x,0,nn}],x] (* Geoffrey Critzer, Sep 18 2012 *)
A060907
E.g.f.: exp(x*exp(x) + 1/2*x^2*exp(x)^2 + 1/4*x^4*exp(x)^4).
Original entry on oeis.org
1, 1, 4, 19, 116, 901, 8422, 89755, 1061048, 13746169, 193901066, 2965146559, 48946004956, 867463969789, 16405240966766, 329147315037811, 6973157545554128, 155446026607476145, 3636697161715448914, 89099916704329731895, 2281451214192505136516
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
egf:= exp(x*exp(x)+x^2*exp(x)^2/2+x^4*exp(x)^4/4):
a:= n-> n!*coeff(series(egf, x, n+11), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2014
-
nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^2/2+a^4/4],{x,0,nn}],x] (* Geoffrey Critzer, Sep 18 2012 *)
A060908
E.g.f.: exp(x*exp(x*exp(x)) + 1/2*x^2*exp(x*exp(x))^2).
Original entry on oeis.org
1, 1, 4, 25, 194, 1791, 19312, 237637, 3280524, 50136049, 839267936, 15255154179, 298936866736, 6277386102703, 140540145723720, 3339966073612921, 83936496568012208, 2223184658988286113, 61877234830148427808
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
nn=20; a=x Exp[x]; b=x Exp[a]; t=Sum[n^(n-1)x^n/n! ,{n, 1, nn}]; Range[0,nn]! CoefficientList[Series[Exp[b+b^2/2], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 23 2012 *)
A060909
E.g.f.: exp(x*exp(x*exp(x)) + 1/3*x^3*exp(x*exp(x))^3).
Original entry on oeis.org
1, 1, 3, 18, 133, 1236, 13767, 176674, 2547561, 40614408, 708601771, 13433957934, 275200324797, 6061423076476, 142868492357151, 3587417860571346, 95560989416582353, 2690066742390963216, 79752454967110250835
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
Showing 1-10 of 13 results.
Comments