cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A181504 A000272(n+1) - A000951(n), n >= 6. Number of forests of rooted labeled trees with n nodes and height >= 5.

Original entry on oeis.org

720, 32760, 1095360, 33974640, 1054196640, 33765565680, 1132318630080, 40012680759480, 1493837702076720, 58961961488790360, 2459382489787466880, 108300904378742056800, 5028206935516237005120
Offset: 6

Views

Author

Washington Bomfim, Oct 24 2010

Keywords

Crossrefs

Formula

a(n) = A000272(n+1) - A000951(n), n >= 6.

A000949 Number of forests with n nodes and height at most 2.

Original entry on oeis.org

1, 1, 3, 16, 101, 756, 6607, 65794, 733833, 9046648, 121961051, 1782690174, 28055070397, 472594822324, 8479144213191, 161340195463066, 3243707386310033, 68679247688467056, 1526976223741111987, 35557878951515668726, 865217354118762606021
Offset: 0

Views

Author

Keywords

Comments

Equivalently, the number of mappings from a set of n elements into itself where f(f(x)) = f(f(f(x))). - Chad Brewbaker, Mar 26 2014

Examples

			G.f. = 1 + x + 3*x^2 + 16*x^3 + 101*x^4 + 756*x^5 + 6607*x^6 + 65794*x^7 + ... - _Michael Somos_, Jul 03 2018
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A210725. - Alois P. Heinz, Mar 15 2013

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)
    a[ n_] := If[ n < 0, 0, 1 + n! Sum[ Sum[ k^(n - m - k) m^k / (k! (n - m - k)!), {k, n - m}] / m!, {m, n - 1}]]; (* Michael Somos, Jul 03 2018 *)
  • Maxima
    a(n):=n!*sum(sum((k^(n-m-k)*m^k)/(k!*(n-m-k)!),k,1,n-m)/m!,m,1,n-1)+1; /* Vladimir Kruchinin, May 28 2011 */
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x*exp(x*exp(x))))) /* show terms with a(0)=1 */ /* Joerg Arndt, May 28 2011 */

Formula

E.g.f.: exp(x*exp(x*exp(x))).
a(n) = n!*sum(m=1..n-1, sum(k=1..n-m, (k^(n-m-k)*m^k)/(k!*(n-m-k)!))/m!)+1. - Vladimir Kruchinin, May 28 2011

Extensions

More terms from Vladeta Jovovic, Apr 07 2001

A060905 Expansion of e.g.f. exp(x*exp(x) + 1/2*x^2*exp(x)^2).

Original entry on oeis.org

1, 1, 4, 19, 110, 751, 5902, 52165, 509588, 5437729, 62828306, 780287839, 10351912276, 145944541159, 2176931651546, 34225419288421, 565282627986368, 9779830102138945, 176776613812205074, 3330780287838743575
Offset: 0

Views

Author

Vladeta Jovovic, Apr 07 2001

Keywords

Comments

Number of functions f from a set of size n to itself such that f(f(f(x))) = f(x). - Joel B. Lewis, Dec 12 2011

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Column k=3 of A245501.

Programs

  • Mathematica
    nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^2/2],{x,0,nn}],x]  (* Geoffrey Critzer, Sep 18 2012 *)
  • Maxima
    a(n):=sum(sum(k^(n-k)/(n-k)!*binomial(m,k-m)*(1/2)^(k-m),k,m,n)/m!,m,1,n); /* Vladimir Kruchinin, Aug 20 2010 */

Formula

E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 1, m = 2.
a(n) = sum(sum(k^(n-k)/(n-k)!*binomial(m,k-m)*(1/2)^(k-m),k,m,n)/m!,m,1,n), n>0. - Vladimir Kruchinin, Aug 20 2010

A060913 E.g.f.: exp(x*exp(x*exp(x*exp(x))) + 1/3*x^3*exp(x*exp(x*exp(x)))^3).

Original entry on oeis.org

1, 1, 3, 18, 157, 1656, 20727, 300784, 4955337, 91229616, 1853584651, 41147256624, 989990665677, 25647894553048, 711630284942319, 21049888453838136, 661180220075555473, 21976354057916680416
Offset: 0

Views

Author

Vladeta Jovovic, Apr 07 2001

Keywords

Comments

a(n) is the number of functions f:{1,2,...,n} -> {1,2,...,n} such that the functional digraphs have cycles of length 1 or 3 and no element is at a distance of more than 3 from a cycle. - Geoffrey Critzer, Sep 23 2012

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Programs

  • Mathematica
    nn=20; a=x Exp[x]; b=x Exp[a]; c=x Exp[b]; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0,nn]! CoefficientList[Series[Exp[c+c^3/3], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 23 2012 *)

Formula

E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 3, m = 3.

A210725 Triangle read by rows: T(n,k) = number of forests of labeled rooted trees with n nodes and height at most k (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 3, 1, 10, 16, 1, 41, 101, 125, 1, 196, 756, 1176, 1296, 1, 1057, 6607, 12847, 16087, 16807, 1, 6322, 65794, 160504, 229384, 257104, 262144, 1, 41393, 733833, 2261289, 3687609, 4480569, 4742649, 4782969, 1, 293608, 9046648, 35464816, 66025360, 87238720, 96915520, 99637120, 100000000
Offset: 1

Views

Author

N. J. A. Sloane, May 09 2012

Keywords

Examples

			Triangle begins:
  1;
  1,    3;
  1,   10,   16;
  1,   41,  101,   125;
  1,  196,  756,  1176,  1296;
  1, 1057, 6607, 12847, 16087, 16807;
  ...
		

Crossrefs

Diagonals include A000248, A000949, A000950, A000951, A000272.

Programs

  • Maple
    f:= proc(k) f(k):= `if`(k<0, 1, exp(x*f(k-1))) end:
    T:= (n, k)-> coeff(series(f(k), x, n+1), x, n) *n!:
    seq(seq(T(n, k), k=0..n-1), n=1..9); # Alois P. Heinz, May 30 2012
    # second Maple program:
    T:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
          binomial(n-1, j-1)*j*T(j-1, h-1)*T(n-j, h), j=1..n))
        end:
    seq(seq(T(n, k), k=0..n-1), n=1..10);  # Alois P. Heinz, Aug 21 2017
  • Mathematica
    f[?Negative] = 1; f[k] := Exp[x*f[k-1]]; t[n_, k_] := Coefficient[Series[f[k], {x, 0, n+1}], x, n]*n!; Table[Table[t[n, k], {k, 0, n-1}], {n, 1, 9}] // Flatten (* Jean-François Alcover, Oct 30 2013, after Maple *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def T(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*T(j - 1, h - 1)*T(n - j, h) for j in range(1, n + 1)])
    for n in range(1, 11): print([T(n, k) for k in range(n)]) # Indranil Ghosh, Aug 21 2017, after second Maple code

A000950 Number of forests with n nodes and height at most 3.

Original entry on oeis.org

1, 3, 16, 125, 1176, 12847, 160504, 2261289, 35464816, 612419291, 11539360944, 235469524237, 5170808565976, 121535533284999, 3043254281853496, 80852247370051793, 2270951670959226336, 67221368736302224819, 2091039845329887687136
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A210725. - Alois P. Heinz, Mar 15 2013

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x*Exp[x]]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)

Formula

E.g.f.: exp(x*exp(x*exp(x*exp(x)))).

Extensions

More terms from Vladeta Jovovic, Apr 07 2001

A060906 E.g.f.: exp(x*exp(x) + 1/3*x^3*exp(x)^3).

Original entry on oeis.org

1, 1, 3, 12, 73, 556, 4737, 44122, 453441, 5186664, 65671201, 906052654, 13418086497, 211472682604, 3535616946513, 62621439810066, 1172370604136833, 23118679430573008, 478329265510033473, 10349724555927678934, 233633352312272612001, 5492655756487132979796
Offset: 0

Views

Author

Vladeta Jovovic, Apr 07 2001

Keywords

Comments

The number of functions from {1,2,...,n} to itself such that f(x)=f^4(x). - Geoffrey Critzer, Sep 18 2012

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Column k=4 of A245501.

Programs

  • Mathematica
    nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^3/3],{x,0,nn}],x] (* Geoffrey Critzer, Sep 18 2012 *)

Formula

E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 1, m = 3.

A060907 E.g.f.: exp(x*exp(x) + 1/2*x^2*exp(x)^2 + 1/4*x^4*exp(x)^4).

Original entry on oeis.org

1, 1, 4, 19, 116, 901, 8422, 89755, 1061048, 13746169, 193901066, 2965146559, 48946004956, 867463969789, 16405240966766, 329147315037811, 6973157545554128, 155446026607476145, 3636697161715448914, 89099916704329731895, 2281451214192505136516
Offset: 0

Views

Author

Vladeta Jovovic, Apr 07 2001

Keywords

Comments

The number of functions from {1,2,...,n} into itself such that f(x) = f^5(x). - Geoffrey Critzer, Sep 18 2012

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Column k=5 of A245501.

Programs

  • Maple
    egf:= exp(x*exp(x)+x^2*exp(x)^2/2+x^4*exp(x)^4/4):
    a:= n-> n!*coeff(series(egf, x, n+11), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 25 2014
  • Mathematica
    nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^2/2+a^4/4],{x,0,nn}],x] (* Geoffrey Critzer, Sep 18 2012 *)

Formula

E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 1, m = 4.

A060908 E.g.f.: exp(x*exp(x*exp(x)) + 1/2*x^2*exp(x*exp(x))^2).

Original entry on oeis.org

1, 1, 4, 25, 194, 1791, 19312, 237637, 3280524, 50136049, 839267936, 15255154179, 298936866736, 6277386102703, 140540145723720, 3339966073612921, 83936496568012208, 2223184658988286113, 61877234830148427808
Offset: 0

Views

Author

Vladeta Jovovic, Apr 07 2001

Keywords

Comments

a(n) = the number of functions f:{1,2,...,n} -> {1,2,...,n} such that the functional digraphs have cycle lengths at most 2 and no element is at a distance of more than 2 form a cycle. - Geoffrey Critzer, Sep 23 2012

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Programs

  • Mathematica
    nn=20; a=x Exp[x]; b=x Exp[a]; t=Sum[n^(n-1)x^n/n! ,{n, 1, nn}]; Range[0,nn]! CoefficientList[Series[Exp[b+b^2/2], {x, 0, nn}], x]  (* Geoffrey Critzer, Sep 23 2012 *)

Formula

E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 2, m = 2.

A060909 E.g.f.: exp(x*exp(x*exp(x)) + 1/3*x^3*exp(x*exp(x))^3).

Original entry on oeis.org

1, 1, 3, 18, 133, 1236, 13767, 176674, 2547561, 40614408, 708601771, 13433957934, 275200324797, 6061423076476, 142868492357151, 3587417860571346, 95560989416582353, 2690066742390963216, 79752454967110250835
Offset: 0

Views

Author

Vladeta Jovovic, Apr 07 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Formula

E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 2, m = 3.
Showing 1-10 of 13 results. Next