A060905
Expansion of e.g.f. exp(x*exp(x) + 1/2*x^2*exp(x)^2).
Original entry on oeis.org
1, 1, 4, 19, 110, 751, 5902, 52165, 509588, 5437729, 62828306, 780287839, 10351912276, 145944541159, 2176931651546, 34225419288421, 565282627986368, 9779830102138945, 176776613812205074, 3330780287838743575
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^2/2],{x,0,nn}],x] (* Geoffrey Critzer, Sep 18 2012 *)
-
a(n):=sum(sum(k^(n-k)/(n-k)!*binomial(m,k-m)*(1/2)^(k-m),k,m,n)/m!,m,1,n); /* Vladimir Kruchinin, Aug 20 2010 */
A060906
E.g.f.: exp(x*exp(x) + 1/3*x^3*exp(x)^3).
Original entry on oeis.org
1, 1, 3, 12, 73, 556, 4737, 44122, 453441, 5186664, 65671201, 906052654, 13418086497, 211472682604, 3535616946513, 62621439810066, 1172370604136833, 23118679430573008, 478329265510033473, 10349724555927678934, 233633352312272612001, 5492655756487132979796
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^3/3],{x,0,nn}],x] (* Geoffrey Critzer, Sep 18 2012 *)
A060907
E.g.f.: exp(x*exp(x) + 1/2*x^2*exp(x)^2 + 1/4*x^4*exp(x)^4).
Original entry on oeis.org
1, 1, 4, 19, 116, 901, 8422, 89755, 1061048, 13746169, 193901066, 2965146559, 48946004956, 867463969789, 16405240966766, 329147315037811, 6973157545554128, 155446026607476145, 3636697161715448914, 89099916704329731895, 2281451214192505136516
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
egf:= exp(x*exp(x)+x^2*exp(x)^2/2+x^4*exp(x)^4/4):
a:= n-> n!*coeff(series(egf, x, n+11), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2014
-
nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^2/2+a^4/4],{x,0,nn}],x] (* Geoffrey Critzer, Sep 18 2012 *)
A060908
E.g.f.: exp(x*exp(x*exp(x)) + 1/2*x^2*exp(x*exp(x))^2).
Original entry on oeis.org
1, 1, 4, 25, 194, 1791, 19312, 237637, 3280524, 50136049, 839267936, 15255154179, 298936866736, 6277386102703, 140540145723720, 3339966073612921, 83936496568012208, 2223184658988286113, 61877234830148427808
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
nn=20; a=x Exp[x]; b=x Exp[a]; t=Sum[n^(n-1)x^n/n! ,{n, 1, nn}]; Range[0,nn]! CoefficientList[Series[Exp[b+b^2/2], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 23 2012 *)
A060909
E.g.f.: exp(x*exp(x*exp(x)) + 1/3*x^3*exp(x*exp(x))^3).
Original entry on oeis.org
1, 1, 3, 18, 133, 1236, 13767, 176674, 2547561, 40614408, 708601771, 13433957934, 275200324797, 6061423076476, 142868492357151, 3587417860571346, 95560989416582353, 2690066742390963216, 79752454967110250835
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
A060910
E.g.f.: exp(x*exp(x*exp(x)) + 1/2*x^2*exp(x*exp(x))^2 + 1/4*x^4*exp(x*exp(x))^4).
Original entry on oeis.org
1, 1, 4, 25, 200, 1941, 22552, 304207, 4660224, 79627609, 1496962736, 30645682299, 677868344056, 16102526543533, 408764126148120, 11042583947604871, 316299747976627808, 9574687031473970673
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
A060911
E.g.f.: exp(x*exp(x*exp(x*exp(x))) + 1/2*x^2*exp(x*exp(x*exp(x)))^2).
Original entry on oeis.org
1, 1, 4, 25, 218, 2331, 29152, 417607, 6746700, 121312441, 2401341056, 51857779689, 1212621122176, 30509979042115, 821524617293304, 23563369209520711, 717014609781379568, 23064363484845390513
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
A060912
E.g.f.: exp(x*exp(x*exp(x*exp(x*exp(x)))) + 1/2*x^2*exp(x*exp(x*exp(x*exp(x))))^2).
Original entry on oeis.org
1, 1, 4, 25, 218, 2451, 33112, 516727, 9117180, 179330905, 3890434256, 92271385449, 2374775505016, 65900749176835, 1961009596461840, 62275489622799751, 2101798757669917328, 75111617959762807473
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
Showing 1-8 of 8 results.
Comments