A245501
Number A(n,k) of endofunctions f on [n] such that f^k(i) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 27, 1, 1, 1, 4, 10, 256, 1, 1, 1, 3, 19, 41, 3125, 1, 1, 1, 4, 12, 110, 196, 46656, 1, 1, 1, 3, 19, 73, 751, 1057, 823543, 1, 1, 1, 4, 10, 116, 556, 5902, 6322, 16777216, 1, 1, 1, 3, 21, 41, 901, 4737, 52165, 41393, 387420489, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 4, 3, 4, 3, 4, 3, ...
1, 27, 10, 19, 12, 19, 10, ...
1, 256, 41, 110, 73, 116, 41, ...
1, 3125, 196, 751, 556, 901, 220, ...
1, 46656, 1057, 5902, 4737, 8422, 1921, ...
Column k=0-10 give:
A000012,
A000312,
A000248,
A060905,
A060906,
A060907,
A245502,
A245503,
A245504,
A245505,
A245506.
-
with(numtheory):
A:= (n, k)-> `if`(k=0, 1, `if`(k=1, n^n, n! *coeff(series(
exp(add((x*exp(x))^d/d, d=divisors(k-1))), x, n+1), x, n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[0, 1] = 1; A[n_, k_] := If[k==0, 1, If[k==1, n^n, n!*SeriesCoefficient[ Exp[ DivisorSum[k-1, (x*Exp[x])^#/#&]], {x, 0, n}]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)
A060913
E.g.f.: exp(x*exp(x*exp(x*exp(x))) + 1/3*x^3*exp(x*exp(x*exp(x)))^3).
Original entry on oeis.org
1, 1, 3, 18, 157, 1656, 20727, 300784, 4955337, 91229616, 1853584651, 41147256624, 989990665677, 25647894553048, 711630284942319, 21049888453838136, 661180220075555473, 21976354057916680416
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
nn=20; a=x Exp[x]; b=x Exp[a]; c=x Exp[b]; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0,nn]! CoefficientList[Series[Exp[c+c^3/3], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 23 2012 *)
A060906
E.g.f.: exp(x*exp(x) + 1/3*x^3*exp(x)^3).
Original entry on oeis.org
1, 1, 3, 12, 73, 556, 4737, 44122, 453441, 5186664, 65671201, 906052654, 13418086497, 211472682604, 3535616946513, 62621439810066, 1172370604136833, 23118679430573008, 478329265510033473, 10349724555927678934, 233633352312272612001, 5492655756487132979796
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^3/3],{x,0,nn}],x] (* Geoffrey Critzer, Sep 18 2012 *)
A060907
E.g.f.: exp(x*exp(x) + 1/2*x^2*exp(x)^2 + 1/4*x^4*exp(x)^4).
Original entry on oeis.org
1, 1, 4, 19, 116, 901, 8422, 89755, 1061048, 13746169, 193901066, 2965146559, 48946004956, 867463969789, 16405240966766, 329147315037811, 6973157545554128, 155446026607476145, 3636697161715448914, 89099916704329731895, 2281451214192505136516
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
egf:= exp(x*exp(x)+x^2*exp(x)^2/2+x^4*exp(x)^4/4):
a:= n-> n!*coeff(series(egf, x, n+11), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2014
-
nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^2/2+a^4/4],{x,0,nn}],x] (* Geoffrey Critzer, Sep 18 2012 *)
A189487
Expansion of e.g.f. exp(x*exp(x) + x^2*exp(2*x)).
Original entry on oeis.org
1, 1, 5, 28, 185, 1456, 13267, 135598, 1528193, 18805240, 250522451, 3585332554, 54774501025, 888739031116, 15249006695483, 275641537989766, 5231788966650113, 103968303762747472, 2157673505603964643, 46656574558459795522, 1049037051211541521121
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[x Exp[x]+x^2 Exp[2x]],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Sep 22 2011 *)
-
a(n):=n!*sum(sum((k^(n-k)*binomial(m,k-m))/(n-k)!,k,m,n)/m!,m,1,n);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(x)+x^2*exp(2*x)))) \\ Seiichi Manyama, Jul 17 2023
A060908
E.g.f.: exp(x*exp(x*exp(x)) + 1/2*x^2*exp(x*exp(x))^2).
Original entry on oeis.org
1, 1, 4, 25, 194, 1791, 19312, 237637, 3280524, 50136049, 839267936, 15255154179, 298936866736, 6277386102703, 140540145723720, 3339966073612921, 83936496568012208, 2223184658988286113, 61877234830148427808
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
nn=20; a=x Exp[x]; b=x Exp[a]; t=Sum[n^(n-1)x^n/n! ,{n, 1, nn}]; Range[0,nn]! CoefficientList[Series[Exp[b+b^2/2], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 23 2012 *)
A060909
E.g.f.: exp(x*exp(x*exp(x)) + 1/3*x^3*exp(x*exp(x))^3).
Original entry on oeis.org
1, 1, 3, 18, 133, 1236, 13767, 176674, 2547561, 40614408, 708601771, 13433957934, 275200324797, 6061423076476, 142868492357151, 3587417860571346, 95560989416582353, 2690066742390963216, 79752454967110250835
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
A060910
E.g.f.: exp(x*exp(x*exp(x)) + 1/2*x^2*exp(x*exp(x))^2 + 1/4*x^4*exp(x*exp(x))^4).
Original entry on oeis.org
1, 1, 4, 25, 200, 1941, 22552, 304207, 4660224, 79627609, 1496962736, 30645682299, 677868344056, 16102526543533, 408764126148120, 11042583947604871, 316299747976627808, 9574687031473970673
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
A060911
E.g.f.: exp(x*exp(x*exp(x*exp(x))) + 1/2*x^2*exp(x*exp(x*exp(x)))^2).
Original entry on oeis.org
1, 1, 4, 25, 218, 2331, 29152, 417607, 6746700, 121312441, 2401341056, 51857779689, 1212621122176, 30509979042115, 821524617293304, 23563369209520711, 717014609781379568, 23064363484845390513
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
A060912
E.g.f.: exp(x*exp(x*exp(x*exp(x*exp(x)))) + 1/2*x^2*exp(x*exp(x*exp(x*exp(x))))^2).
Original entry on oeis.org
1, 1, 4, 25, 218, 2451, 33112, 516727, 9117180, 179330905, 3890434256, 92271385449, 2374775505016, 65900749176835, 1961009596461840, 62275489622799751, 2101798757669917328, 75111617959762807473
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
Showing 1-10 of 11 results.
Comments